Base of Triangle Calculator – Find Base from Area & Height

Base of Triangle Calculator

Find the base of a triangle using different known measurements.

Triangles are one of the most commonly used shapes in mathematics, construction, engineering, and design. Every triangle has three sides, and one of those sides is usually chosen as the base.

The base is important because the height of the triangle is measured perpendicular to it, and together they are used to calculate the triangle’s area.

In many real-life situations, you may already know the area and the height of a triangle, but the base length is missing. Instead of solving the equation manually, the Base of Triangle Calculator helps you find the base quickly and accurately.

This tool is simple to use and works for all triangle types, including acute, obtuse, right, and scalene triangles.

What the Base of Triangle Calculator Is

A Reverse Geometry Solver

The Base of Triangle Calculator is an online geometry tool that finds the base length of a triangle when the area and height are known. Normally, the area formula uses the base to calculate the area. This calculator works in reverse by using the area to calculate the base.

This makes it especially useful for:

  • Students solving algebra or geometry problems

  • Engineers working with measurements

  • Builders estimating dimensions

  • Surveyors calculating land sections

What the Calculator Can Find

The main output of the calculator is:

  • The base of the triangle

Some versions of the calculator may also display:

  • The formula used

  • Intermediate steps

  • Validation of inputs

All calculations are based on standard triangle geometry rules.

How the Base of Triangle Calculator Works

Step 1: Enter the Area

First, you enter the area of the triangle. This can be in square units such as square meters, square feet, or square centimeters.

Step 2: Enter the Height

Next, you enter the height (also called the altitude). This is the perpendicular distance from the opposite vertex to the base.

Step 3: Calculate the Base

The calculator rearranges the standard triangle area formula to solve for the base.

It then shows the base length instantly.

Key Formula Used

Standard Area Formula

The basic area formula for a triangle is:

\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}

Rearranged Base Formula

To find the base, the formula is rearranged:

\text{Base} = \frac{2 \times \text{Area}}{\text{height}}

This is the main formula the calculator uses.

Step-by-Step Example

Given Values

  • Area = 48 square units

  • Height = 6 units

Step 1: Apply the Formula

\text{Base} = \frac{2 \times 48}{6}

Step 2: Solve

\text{Base} = \frac{96}{6} = 16 \text{ units}

So, the base of the triangle is 16 units.

The calculator performs this calculation instantly.

Features of the Base of Triangle Calculator

Quick and Accurate Results

The calculator gives instant answers using a verified mathematical formula. This saves time and avoids calculation mistakes.

Simple Input System

You only need to enter two values: area and height. The interface is easy to understand for all users.

Works for All Triangle Types

The formula applies to acute, obtuse, right, and scalene triangles.

No Manual Algebra Required

You do not need to rearrange equations or solve fractions yourself. The calculator does everything for you.

Uses and Applications

Education and Homework

Students often learn the triangle area formula in school. This calculator helps them understand how to reverse the formula to find the base. It is useful for homework, exams, and practice problems.

Construction and Architecture

Builders and architects use triangle measurements when designing roofs, frames, and support structures. When the area and height are known, this calculator helps determine the base quickly.

Surveying and Land Measurement

Surveyors measure land sections using triangular shapes. This tool helps find unknown base lengths from known area and height values.

Tips to Avoid Common Mistakes

Many users enter incorrect values that do not match the real dimensions of a triangle. For example, using an area that does not match the given height can produce unrealistic base values. Always make sure the area and height belong to the same triangle before calculating the base.

Another common mistake is mixing measurement units. If the area is in square meters and the height is in feet, the base result will be incorrect. To avoid this, always use consistent units for both area and height.

Some users confuse the height with the side length. The height must be perpendicular to the base, not slanted. Make sure you are using the correct altitude value.

Typing errors are also common. A small mistake in entering numbers can change the entire result. Always double-check your inputs before calculating.

FAQs

What is the base of a triangle?

The base is the side of the triangle used with the height to calculate the area.

Can this calculator work for any triangle?

Yes, it works for all triangle types as long as the area and height are known.

Does the height have to be inside the triangle?

No, in obtuse triangles the height may fall outside the triangle, but the formula still works.

Is this calculator free to use?

Most base of triangle calculators are available for free online.

Final Words

The Base of Triangle Calculator is a simple and powerful geometry tool. It helps you find the base length of a triangle using only the area and height.

Whether you are a student, engineer, builder, or surveyor, this calculator saves time, improves accuracy, and makes triangle calculations easier.

Similar Posts

  • Right Triangle Trigonometry Calculator — Solve Sides & Angles with SOHCAHTOA

    Right Triangle Trigonometry Calculator Solve right triangle (sides + angles) using SOHCAHTOA or Pythagoras. Select Solve Mode Hypotenuse + AngleOpposite + AngleAdjacent + AngleOpposite & AdjacentOpposite & HypotenuseAdjacent & Hypotenuse Hypotenuse (c) Angle (°) Opposite (a) Angle (°) Adjacent (b) Angle (°) Opposite (a) Adjacent (b) Opposite (a) Hypotenuse (c) Adjacent (b) Hypotenuse (c) Select…

  • Triangle Area Using Vertices Calculator — Find Area from 3 Points

    Triangle Area Calculator (3 Vertices) Point A Point B Point C Select Unit mmcmminft Calculate Area Formula Used: A = ½ × |x₁(y₂ − y₃) + x₂(y₃ − y₁) + x₃(y₁ − y₂)| In coordinate geometry, shapes are often described using points on a graph instead of side lengths or angles. A triangle, for example,…

  • Missing Side of Triangle Calculator – Find Side Length Instantly

    // Base64 Content var b64 = “PCFET0NUWVBFIGh0bWw+CjxodG1sIGxhbmc9ImVuIj4KCjxoZWFkPgogICAgPG1ldGEgY2hhcnNldD0iVVRGLTgiPgogICAgPG1ldGEgbmFtZT0idmlld3BvcnQiIGNvbnRlbnQ9IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xLjAiPgogICAgPHRpdGxlPk1pc3NpbmcgU2lkZSBvZiBUcmlhbmdsZSBDYWxjdWxhdG9yPC90aXRsZT4KPC9oZWFkPgoKPGJvZHk+CgogICAgPCEtLSBNaXNzaW5nIFNpZGUgb2YgVHJpYW5nbGUgQ2FsY3VsYXRvciBTdGFydCAtLT4KICAgIDxkaXYgaWQ9Im1zdGMtY29udGFpbmVyIiBjbGFzcz0ibXN0Yy13cmFwcGVyIj4KICAgICAgICA8c3R5bGU+CiAgICAgICAgICAgIC5tc3RjLXdyYXBwZXIgewogICAgICAgICAgICAgICAgZm9udC1mYW1pbHk6ICdTZWdvZSBVSScsIFJvYm90bywgSGVsdmV0aWNhLCBBcmlhbCwgc2Fucy1zZXJpZjsKICAgICAgICAgICAgICAgIG1heC13aWR0aDogODAwcHg7CiAgICAgICAgICAgICAgICBtYXJnaW46IDAgYXV0bzsKICAgICAgICAgICAgICAgIGJhY2tncm91bmQ6ICNmZmY7CiAgICAgICAgICAgICAgICBwYWRkaW5nOiAzMHB4OwogICAgICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogMTJweDsKICAgICAgICAgICAgICAgIGJveC1zaGFkb3c6IDAgNHB4IDIwcHggcmdiYSgwLCAwLCAwLCAwLjA4KTsKICAgICAgICAgICAgICAgIGJveC1zaXppbmc6IGJvcmRlci1ib3g7CiAgICAgICAgICAgICAgICBjb2xvcjogIzMzMzsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtd3JhcHBlciAqIHsKICAgICAgICAgICAgICAgIGJveC1zaXppbmc6IGluaGVyaXQ7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC5tc3RjLWhlYWRlciB7CiAgICAgICAgICAgICAgICB0ZXh0LWFsaWduOiBjZW50ZXI7CiAgICAgICAgICAgICAgICBtYXJnaW4tYm90dG9tOiAzMHB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1oZWFkZXIgaDIgewogICAgICAgICAgICAgICAgbWFyZ2luOiAwIDAgNXB4IDA7CiAgICAgICAgICAgICAgICBjb2xvcjogIzhlNDRhZDsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMjZweDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtc3VidGl0bGUgewogICAgICAgICAgICAgICAgY29sb3I6ICM5YjU5YjY7CiAgICAgICAgICAgICAgICBmb250LXNpemU6IDE0cHg7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZjRlY2Y3OwogICAgICAgICAgICAgICAgcGFkZGluZzogNHB4IDEycHg7CiAgICAgICAgICAgICAgICBib3JkZXItcmFkaXVzOiAxNXB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogaW5saW5lLWJsb2NrOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1ncmlkIHsKICAgICAgICAgICAgICAgIGRpc3BsYXk6IGdyaWQ7CiAgICAgICAgICAgICAgICBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IDFmciAxZnI7CiAgICAgICAgICAgICAgICBnYXA6IDQwcHg7CiAgICAgICAgICAgICAgICBhbGlnbi1pdGVtczogc3RhcnQ7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIEBtZWRpYSAobWF4LXdpZHRoOiA3MDBweCkgewogICAgICAgICAgICAgICAgLm1zdGMtZ3JpZCB7CiAgICAgICAgICAgICAgICAgICAgZ3JpZC10ZW1wbGF0ZS1jb2x1bW5zOiAxZnI7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC5tc3RjLWNvbnRyb2xzIHsKICAgICAgICAgICAgICAgIGRpc3BsYXk6IGZsZXg7CiAgICAgICAgICAgICAgICBmbGV4LWRpcmVjdGlvbjogY29sdW1uOwogICAgICAgICAgICAgICAgZ2FwOiAyMHB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1sYWJlbCB7CiAgICAgICAgICAgICAgICBmb250LXdlaWdodDogNjAwOwogICAgICAgICAgICAgICAgbWFyZ2luLWJvdHRvbTogOHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogYmxvY2s7CiAgICAgICAgICAgICAgICBjb2xvcjogIzQ0NDsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMTRweDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtc2VsZWN0LAogICAgICAgICAgICAubXN0Yy1pbnB1dCB7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgICAgICBib3JkZXI6IDJweCBzb2xpZCAjZWNmMGYxOwogICAgICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogOHB4OwogICAgICAgICAgICAgICAgZm9udC1zaXplOiAxNnB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1idG4gewogICAgICAgICAgICAgICAgYmFja2dyb3VuZDogIzliNTliNjsKICAgICAgICAgICAgICAgIGNvbG9yOiB3aGl0ZTsKICAgICAgICAgICAgICAgIGJvcmRlcjogbm9uZTsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDhweDsKICAgICAgICAgICAgICAgIGN1cnNvcjogcG9pbnRlcjsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMTZweDsKICAgICAgICAgICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1idG46aG92ZXIgewogICAgICAgICAgICAgICAgYmFja2dyb3VuZDogIzhlNDRhZDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtcmVzdWx0cyB7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZmJmNmZkOwogICAgICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2ViZGVmMDsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDhweDsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDE1cHg7CiAgICAgICAgICAgICAgICBtYXJnaW4tdG9wOiAyMHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogbm9uZTsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtdml6LWJveCB7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZmZmOwogICAgICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2YwZjBmMDsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDEycHg7CiAgICAgICAgICAgICAgICBwYWRkaW5nOiAyMHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgICAgIGp1c3RpZnktY29udGVudDogY2VudGVyOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy12aXotYm94IHN2ZyB7CiAgICAgICAgICAgICAgICBtYXgtd2lkdGg6IDEwMCU7CiAgICAgICAgICAgICAgICBoZWlnaHQ6IGF1dG87CiAgICAgICAgICAgICAgICBtYXgtaGVpZ2h0OiAyNTBweDsKICAgICAgICAgICAgfQogICAgICAgIDwvc3R5bGU+CgogICAgICAgIDxkaXYgY2xhc3M9Im1zdGMtaGVhZGVyIj4KICAgICAgICAgICAgPGgyPk1pc3NpbmcgU2lkZSBvZiBUcmlhbmdsZSBDYWxjdWxhdG9yPC9oMj4KICAgICAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1zdWJ0aXRsZSI+TGF3IG9mIFNpbmVzICYgQ29zaW5lcyBTb2x2ZXI8L2Rpdj4KICAgICAgICA8L2Rpdj4KCiAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1ncmlkIj4KICAgICAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1jb250cm9scyI+CiAgICAgICAgICAgICAgICA8ZGl2PgogICAgICAgICAgICAgICAgICAgIDxsYWJlbCBjbGFzcz0ibXN0Yy1sYWJlbCI+S25vd24gVmFsdWVzOjwvbGFiZWw+CiAgICAgICAgICAgICAgICAgICAgPHNlbGVjdCBpZD0ibXN0Yy1tb2RlIiBjbGFzcz0ibXN0Yy1zZWxlY3QiIG9uY2hhbmdlPSJtc3RjUmVzZXQoKSI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxvcHRpb24gdmFsdWU9InNhcyI+MiBTaWRlcyAmIEluY2x1ZGVkIEFuZ2xlIChTQVMpPC9vcHRpb24+CiAgICAgICAgICAgICAgICAgICAgICAgIDxvcHRpb24gdmFsdWU9ImFhcyI+MiBBbmdsZXMgJiBTaWRlIChBQVMvQVNBKTwvb3B0aW9uPgogICAgICAgICAgICAgICAgICAgICAgICA8b3B0aW9uIHZhbHVlPSJyaWdodCI+UmlnaHQgVHJpYW5nbGUgKDIgU2lkZXMpPC9vcHRpb24+CiAgICAgICAgICAgICAgICAgICAgPC9zZWxlY3Q+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJpbnAtYm94Ij4KICAgICAgICAgICAgICAgICAgICA8IS0tIER5bmFtaWMgLS0+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8YnV0dG9uIGNsYXNzPSJtc3RjLWJ0biIgb25jbGljaz0ibXN0Y0NhbGMoKSI+RmluZCBNaXNzaW5nIFNpZGU8L2J1dHRvbj4KCiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJtc3RjLXJlcyIgY2xhc3M9Im1zdGMtcmVzdWx0cyI+CiAgICAgICAgICAgICAgICAgICAgPHA+PGI+TWlzc2luZyBTaWRlICh4KTogPC9iPiA8c3BhbiBpZD0icmVzLXZhbCIgc3R5bGU9ImNvbG9yOiM4ZTQ0YWQ7IGZvbnQtc2l6ZToxOHB4OyI+LTwvc3Bhbj48L3A+CiAgICAgICAgICAgICAgICAgICAgPGRpdiBpZD0ibXN0Yy1zdGVwcyIKICAgICAgICAgICAgICAgICAgICAgICAgc3R5bGU9ImZvbnQtc2l6ZToxM3B4OyBjb2xvcjojNTU1OyBib3JkZXItdG9wOjFweCBzb2xpZCAjZWVlOyBwYWRkaW5nLXRvcDoxMHB4OyI+PC9kaXY+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgPC9kaXY+CgogICAgICAgICAgICA8ZGl2IGNsYXNzPSJtc3RjLXZpei1ib3giPgogICAgICAgICAgICAgICAgPHN2ZyBpZD0ibXN0Yy1zdmciIHZpZXdCb3g9IjAgMCAxMDAgMTAwIj4KICAgICAgICAgICAgICAgICAgICA8dGV4dCB4PSI1MCIgeT0iNTAiIHRleHQtYW5jaG9yPSJtaWRkbGUiIGZpbGw9IiNjY2MiPlZpc3VhbGl6YXRpb248L3RleHQ+CiAgICAgICAgICAgICAgICA8L3N2Zz4KICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgPC9kaXY+CgogICAgICAgIDxzY3JpcHQ+CiAgICAgICAgICAgIGZ1bmN0aW9uIG1zdGNSZXNldCgpIHsKICAgICAgICAgICAgICAgIGNvbnN0IG1vZGUgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbXN0Yy1tb2RlJykudmFsdWU7CiAgICAgICAgICAgICAgICBjb25zdCBib3ggPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnaW5wLWJveCcpOwogICAgICAgICAgICAgICAgaWYgKG1vZGUgPT09ICdzYXMnKSB7CiAgICAgICAgICAgICAgICAgICAgYm94LmlubmVySFRNTCA9IGA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiPlNpZGUgYTwvbGFiZWw+PGlucHV0IHR5cGU9Im51bWJlciIgaWQ9InYxIiBjbGFzcz0ibXN0Yy1pbnB1dCIgcGxhY2Vob2xkZXI9ImUuZy4gNSI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5TaWRlIGI8L2xhYmVsPjxpbnB1dCB0eXBlPSJudW1iZXIiIGlkPSJ2MiIgY2xhc3M9Im1zdGMtaW5wdXQiIHBsYWNlaG9sZGVyPSJlLmcuIDciPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxsYWJlbCBjbGFzcz0ibXN0Yy1sYWJlbCIgc3R5bGU9Im1hcmdpbi10b3A6MTBweCI+SW5jbHVkZWQgQW5nbGUgKGRlZyk8L2xhYmVsPjxpbnB1dCB0eXBlPSJudW1iZXIiIGlkPSJ2MyIgY2xhc3M9Im1zdGMtaW5wdXQiIHBsYWNlaG9sZGVyPSJlLmcuIDQ1Ij5gOwogICAgICAgICAgICAgICAgfSBlbHNlIGlmIChtb2RlID09PSAnYWFzJykgewogICAgICAgICAgICAgICAgICAgIGJveC5pbm5lckhUTUwgPSBgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIj5BbmdsZSBBIChkZWcpPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjEiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA2MCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5BbmdsZSBCIChkZWcpPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjIiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA2MCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5TaWRlIGEgKG9wcCB0byBBKTwvbGFiZWw+PGlucHV0IHR5cGU9Im51bWJlciIgaWQ9InYzIiBjbGFzcz0ibXN0Yy1pbnB1dCIgcGxhY2Vob2xkZXI9ImUuZy4gNSI+YDsKICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgYm94LmlubmVySFRNTCA9IGA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiPkxlZyBhPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjEiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiAzIj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiIHN0eWxlPSJtYXJnaW4tdG9wOjEwcHgiPkxlZyBiPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjIiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA0Ij5gOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtcmVzJykuc3R5bGUuZGlzcGxheSA9ICdub25lJzsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgZnVuY3Rpb24gbXN0Y0NhbGMoKSB7CiAgICAgICAgICAgICAgICBjb25zdCBtb2RlID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtbW9kZScpLnZhbHVlOwogICAgICAgICAgICAgICAgbGV0IHJlcyA9IDA7IGxldCBzdGVwcyA9ICIiOwogICAgICAgICAgICAgICAgbGV0IHB0cyA9IFtdOwoKICAgICAgICAgICAgICAgIHRyeSB7CiAgICAgICAgICAgICAgICAgICAgY29uc3QgdjEgPSBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd2MScpLnZhbHVlKTsKICAgICAgICAgICAgICAgICAgICBjb25zdCB2MiA9IHBhcnNlRmxvYXQoZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3YyJykudmFsdWUpOwogICAgICAgICAgICAgICAgICAgIGNvbnN0IHYzID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3YzJykgPyBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd2MycpLnZhbHVlKSA6IDA7CgogICAgICAgICAgICAgICAgICAgIGlmICghdjEgfHwgIXYyKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIGlmIChtb2RlID09PSAnc2FzJykgewogICAgICAgICAgICAgICAgICAgICAgICAvLyBMYXcgb2YgQ29zaW5lczogYyA9IHNxcnQoYV4yK2JeMiAtIDJhYiBjb3MoQykpCiAgICAgICAgICAgICAgICAgICAgICAgIGlmICghdjMpIHJldHVybjsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgcmFkID0gdjMgKiBNYXRoLlBJIC8gMTgwOwogICAgICAgICAgICAgICAgICAgICAgICByZXMgPSBNYXRoLnNxcnQodjEgKiB2MSArIHYyICogdjIgLSAyICogdjEgKiB2MiAqIE1hdGguY29zKHJhZCkpOwogICAgICAgICAgICAgICAgICAgICAgICBzdGVwcyA9IGBVc2luZyBMYXcgb2YgQ29zaW5lczo8YnI+eMKyID0gYcKyICsgYsKyIC0gMmFiIGNvcyjOuCk8YnI+eCA9ICR7cmVzLnRvRml4ZWQoNCl9YDsKICAgICAgICAgICAgICAgICAgICAgICAgcHRzID0gW3sgeDogMCwgeTogMCB9LCB7IHg6IHYxLCB5OiAwIH0sIHsgeDogdjIgKiBNYXRoLmNvcyhyYWQpLCB5OiB2MiAqIE1hdGguc2luKHJhZCkgfV07CiAgICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgICAgIGVsc2UgaWYgKG1vZGUgPT09ICdhYXMnKSB7CiAgICAgICAgICAgICAgICAgICAgICAgIC8vIEFuZ2xlIEE9djEsIEFuZ2xlIEI9djIsIFNpZGUgYT12My4gRmluZCBTaWRlIGI/IFR5cGljYWxseSB1c2VycyB3YW50IG1pc3Npbmcgc2lkZXMuCiAgICAgICAgICAgICAgICAgICAgICAgIC8vIGIgLyBzaW5CID0gYSAvIHNpbkEgPT4gYiA9IGEgKiBzaW5CIC8gc2luQQogICAgICAgICAgICAgICAgICAgICAgICAvLyBUaGlzIHRvb2wgYXNzdW1lcyBmaW5kaW5nIFNpZGUgYiAob3Bwb3NpdGUgQW5nbGUgQikuCiAgICAgICAgICAgICAgICAgICAgICAgIGlmICghdjMpIHJldHVybjsKICAgICAgICAgICAgICAgICAgICAgICAgaWYgKHYxICsgdjIgPj0gMTgwKSB7IGFsZXJ0KCJTdW0gb2YgYW5nbGVzIG11c3QgYmUgPCAxODAiKTsgcmV0dXJuOyB9CiAgICAgICAgICAgICAgICAgICAgICAgIGNvbnN0IHJhZEEgPSB2MSAqIE1hdGguUEkgLyAxODA7CiAgICAgICAgICAgICAgICAgICAgICAgIGNvbnN0IHJhZEIgPSB2MiAqIE1hdGguUEkgLyAxODA7CiAgICAgICAgICAgICAgICAgICAgICAgIHJlcyA9IHYzICogTWF0aC5zaW4ocmFkQikgLyBNYXRoLnNpbihyYWRBKTsKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcHMgPSBgVXNpbmcgTGF3IG9mIFNpbmVzOjxicj5iIC8gc2luKEIpID0gYSAvIHNpbihBKTxicj5iID0gYSDDlyBzaW4oQikgLyBzaW4oQSk8YnI+YiA9ICR7cmVzLnRvRml4ZWQoNCl9YDsKICAgICAgICAgICAgICAgICAgICAgICAgLy8gQUFTIERyYXcgKGFwcHJveCkKICAgICAgICAgICAgICAgICAgICAgICAgLy8gQSBhdCBPcmlnaW4gY3JlYXRlcyBhbmdsZS4KICAgICAgICAgICAgICAgICAgICAgICAgLy8gTmVlZCBjb29yZGluYXRlcy4gQiBpcyBhdCAoYywgMCkuIEMgaXMgKHgseSkuCiAgICAgICAgICAgICAgICAgICAgICAgIC8vIFdlIG5lZWQgc2lkZSBjLi4uIGMgLyBzaW5DID0gYSAvIHNpbkEuIEMgPSAxODAtQS1CLgogICAgICAgICAgICAgICAgICAgICAgICBjb25zdCByYWRDID0gKDE4MCAtIHYxIC0gdjIpICogTWF0aC5QSSAvIDE4MDsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgYyA9IHYzICogTWF0aC5zaW4ocmFkQykgLyBNYXRoLnNpbihyYWRBKTsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgYSA9IHYzOwogICAgICAgICAgICAgICAgICAgICAgICBjb25zdCBiID0gcmVzOwogICAgICAgICAgICAgICAgICAgICAgICAvLyBBPSgwLDApLCBCPShjLDApLiBDPwogICAgICAgICAgICAgICAgICAgICAgICAvLyBDIHggPSBiIGNvc0EsIHkgPSBiIHNpbkEKICAgICAgICAgICAgICAgICAgICAgICAgcHRzID0gW3sgeDogMCwgeTogMCB9LCB7IHg6IGMsIHk6IDAgfSwgeyB4OiBiICogTWF0aC5jb3MocmFkQSksIHk6IGIgKiBNYXRoLnNpbihyYWRBKSB9XTsKICAgICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICAgICAgZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgICAgIC8vIFB5dGhhZzogYyA9IHNxcnQoYV4yK2JeMikKICAgICAgICAgICAgICAgICAgICAgICAgcmVzID0gTWF0aC5zcXJ0KHYxICogdjEgKyB2MiAqIHYyKTsKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcHMgPSBgeCA9IOKImihhwrIgKyBiwrIpID0gJHtyZXMudG9GaXhlZCg0KX1gOwogICAgICAgICAgICAgICAgICAgICAgICBwdHMgPSBbeyB4OiAwLCB5OiAwIH0sIHsgeDogdjEsIHk6IDAgfSwgeyB4OiAwLCB5OiB2MiB9XTsKICAgICAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgICAgIGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdyZXMtdmFsJykuaW5uZXJUZXh0ID0gcmVzLnRvRml4ZWQoNCk7CiAgICAgICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtc3RlcHMnKS5pbm5lckhUTUwgPSBzdGVwczsKICAgICAgICAgICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbXN0Yy1yZXMnKS5zdHlsZS5kaXNwbGF5ID0gJ2Jsb2NrJzsKICAgICAgICAgICAgICAgICAgICBtc3RjRHJhdyhwdHMpOwoKICAgICAgICAgICAgICAgIH0gY2F0Y2ggKGUpIHsgfQogICAgICAgICAgICB9CgogICAgICAgICAgICBmdW5jdGlvbiBtc3RjRHJhdyhwdHMpIHsKICAgICAgICAgICAgICAgIGNvbnN0IHN2ZyA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdtc3RjLXN2ZycpOwogICAgICAgICAgICAgICAgY29uc3QgeHMgPSBwdHMubWFwKHAgPT4gcC54KSwgeXMgPSBwdHMubWFwKHAgPT4gcC55KTsKICAgICAgICAgICAgICAgIGNvbnN0IG14ID0gTWF0aC5taW4oLi4ueHMpLCBNeCA9IE1hdGgubWF4KC4uLnhzKSwgbXkgPSBNYXRoLm1pbiguLi55cyksIE15ID0gTWF0aC5tYXgoLi4ueXMpOwogICAgICAgICAgICAgICAgY29uc3QgdyA9IE14IC0gbXgsIGggPSBNeSAtIG15OwogICAgICAgICAgICAgICAgY29uc3QgcGFkID0gTWF0aC5tYXgodywgaCkgKiAwLjI7CiAgICAgICAgICAgICAgICBjb25zdCBkID0gYE0gJHtwdHNbMF0ueH0gJHtwdHNbMF0ueX0gTCAke3B0c1sxXS54fSAke3B0c1sxXS55fSBMICR7cHRzWzJdLnh9ICR7cHRzWzJdLnl9IFpgOwoKICAgICAgICAgICAgICAgIC8vIEZsaXAgWSBpbXBsaWNpdGx5IG9yIGFzc3VtZSBjb29yZHMKICAgICAgICAgICAgICAgIHN2Zy5pbm5lckhUTUwgPSBgPHBhdGggZD0iJHtkfSIgZmlsbD0iI2Y0ZWNmNyIgc3Ryb2tlPSIjOGU0NGFkIiBzdHJva2Utd2lkdGg9IiR7TWF0aC5tYXgodywgaCkgLyA0MH0iIC8+YDsKICAgICAgICAgICAgICAgIHN2Zy5zZXRBdHRyaWJ1dGUoJ3ZpZXdCb3gnLCBgJHtteCAtIHBhZH0gJHtteSAtIHBhZH0gJHt3ICsgMiAqIHBhZH0gJHtoICsgMiAqIHBhZH1gKTsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgbXN0Y1Jlc2V0KCk7CiAgICAgICAgPC9zY3JpcHQ+CiAgICA8L2Rpdj4KICAgIDwhLS0gTWlzc2luZyBTaWRlIG9mIFRyaWFuZ2xlIENhbGN1bGF0b3IgRW5kIC0tPgoKPC9ib2R5PgoKPC9odG1sPg==”; var htmlContent = “”; try { htmlContent = atob(b64); } catch (e) { console.error(“Base64 decode failed”, e); wrapper.innerHTML = ” Error loading calculator. “; return; } // Create Iframe var iframe = document.createElement(‘iframe’); iframe.style.width = “100%”; iframe.style.border = “none”; iframe.style.overflow = “hidden”; iframe.scrolling = “no”; iframe.style.minHeight = “400px”;…

  • Acute Triangle Calculator – Verify & Calculate Triangle Angles and Area

    Acute Triangle Calculator Verify whether a triangle is acute and calculate its angles and area using different known values. Calculate from: Three AnglesThree SidesTwo Sides & Included Angle Angle A (°) Angle B (°) Angle C (°) Side a Side b Side c Side a Side b Included Angle (°) Select Unit unitscmminft Calculate if([A,B,C].some(v=>isNaN(v)||v0.01){…