Dome Surface Area Calculator – Easy Spherical Cap Geometry Tool

Dome Surface Area Calculator

Dome Calculator

Architectural Surface Area & Volume.

Roof Surface Area
sq ft
Floor Area
sq ft
Internal Volume
cu ft
Circumference
ft

Work Shown

 

Domes are beautiful curved structures that appear in many famous buildings such as mosques, temples, museums, stadiums, and planetariums. From an engineering and geometry point of view, a dome is usually modeled as a part of a sphere, often called a spherical cap.

Because of its curved shape, calculating the surface area of a dome is not as simple as calculating the area of a flat roof or a rectangular wall.

Knowing the surface area of a dome is very important. It helps architects and engineers estimate how much material is needed for construction. It also helps calculate the amount of paint, tiles, insulation, or cladding required to cover the curved surface.

A Dome Surface Area Calculator makes this task easy by using proven mathematical formulas to give fast and accurate results.

Instead of doing complex calculations by hand, users can simply enter a few values and get the surface area instantly. This saves time, reduces errors, and improves planning for both small and large projects.

What the Dome Surface Area Calculator Is

The Dome Surface Area Calculator is an online geometry tool designed to calculate the curved surface area of a dome. In most cases, the dome is treated as a spherical cap, which is the top part of a sphere cut by a flat plane.

The calculator usually asks for values such as the radius of the sphere and the height of the dome. Using these inputs, it calculates the curved surface area. Some calculators also provide the total surface area by including the base area if needed.

Related Calculator:  Polar Area Calculator – Find the Area Enclosed by a Polar Curve

This tool is useful for architects, civil engineers, construction planners, students, and anyone working with curved roof designs. It removes the need for advanced mathematics and makes dome calculations simple and accessible.

How the Calculator Works

The Dome Surface Area Calculator works by applying standard spherical geometry formulas.

First, the user enters the radius of the sphere. This is the distance from the center of the sphere to any point on its surface. In dome design, this radius defines how curved the dome will be.

Next, the user enters the height of the dome. This is the vertical distance from the base of the dome to the top point. A taller dome has more curved surface area than a shallow one.

Once these values are entered, the calculator uses a formula that relates the radius and height to the curved surface area of the spherical cap. The result is shown instantly, usually in square units such as square meters or square feet.

Some calculators also allow users to include the base area if they want the total surface area of the dome structure. This is useful for special design or analysis purposes.

Key Formulas Used in the Calculator

The Dome Surface Area Calculator is based on well-known formulas from sphere geometry.

Radius of the Base Circle

a = \sqrt{r^2 - (r - h)^2}

Here, r is the radius of the sphere and h is the height of the dome. This formula finds the radius of the circular base of the dome.

Curved Surface Area of the Dome

A_{cap} = 2\pi r h

This formula gives the curved surface area of the spherical cap. It does not include the flat base area. This is the most important value for material estimation.

Total Surface Area Including Base

A_{total} = 2\pi r h + \pi a^2

This formula adds the area of the circular base to the curved surface area. It is useful in special structural calculations.

Related Calculator:  Cone Surface Area Calculator – Find Total & Curved Surface Fast

Hemisphere Special Case

A_{hemisphere} = 2\pi r^2

If the height of the dome is equal to the radius of the sphere, the dome becomes a perfect hemisphere.

Step-by-Step Example

Let’s calculate the curved surface area of a dome with the following values:

Radius of the sphere, r = 10 meters
Height of the dome, h = 6 meters

First, apply the curved surface area formula.

A = 2 \pi \times 10 \times 6 A = 120\pi

Now, convert it to a decimal value.

A \approx 376.99 \text{ square meters}

This means the curved surface of the dome covers about 377 square meters. This value can be used to estimate paint, tiles, or cladding materials.

If the base area is also needed, we first calculate the base radius.

a = \sqrt{10^2 - (10 - 6)^2} a = \sqrt{100 - 16} = \sqrt{84} a \approx 9.17 \text{ meters}

Now calculate the base area.

A_{base} = \pi \times 9.17^2 \approx 264.2

Add it to the curved surface area.

A_{total} \approx 376.99 + 264.2 = 641.19

So, the total surface area including the base is about 641 square meters.

Features of the Dome Surface Area Calculator

One major feature of the calculator is its simplicity. Users only need to enter a few values, and the result is displayed instantly.

Another important feature is accuracy. The calculator uses precise mathematical constants such as π to ensure reliable results.

Many calculators also support different unit systems. Users can enter values in meters, feet, or other units depending on their project needs.

Some tools provide both curved surface area and total surface area, giving users flexibility based on their requirements.

The calculator is usually accessible on mobile phones, tablets, and computers, making it convenient for on-site use.

Uses and Applications

The Dome Surface Area Calculator has many practical applications.

In architecture, it helps designers estimate the material needed for dome roofs and curved structures.

Related Calculator:  Area to Z‑Score Calculator – Convert Probability to Z‑Score Fast

In construction, it is used to plan cladding, insulation, waterproofing, and finishing work.

In civil engineering, the calculator helps analyze structural loads and material coverage.

In education, students use it to understand spherical geometry concepts more easily.

In renovation projects, it helps estimate paint or tile quantities for existing domes.

Tips for Accurate Results

Always measure the dome height and radius carefully. Small errors can lead to large differences in surface area.

Use consistent units for all measurements. Do not mix meters with feet.

Understand whether your dome is a full hemisphere or a smaller spherical cap.

If the dome is not perfectly spherical, use average measurements for better estimates.

Double-check your inputs before calculating.

Common Mistakes to Avoid

One common mistake is confusing diameter with radius. The radius is always half of the diameter.

Another mistake is forgetting that the curved surface area does not include the base.

Some users also enter incorrect height values, especially for shallow domes.

Using the hemisphere formula for non-hemisphere domes can lead to wrong results.

Ignoring unit conversions can cause serious calculation errors.

Frequently Asked Questions

What is a dome in geometry?

A dome is usually modeled as a spherical cap, which is part of a sphere cut by a plane.

What does the calculator measure?

It calculates the curved surface area of the dome.

Can it calculate total surface area?

Yes, some calculators include the base area if needed.

Why is curved surface area important?

It helps estimate material, paint, insulation, and cladding needs.

Who can use this calculator?

Architects, engineers, students, builders, and designers.

Final Words

The Dome Surface Area Calculator is a powerful and easy-to-use tool for anyone working with curved structures. It transforms complex spherical geometry into simple, fast results.

By entering just the radius and height, users can accurately estimate the curved surface area of a dome. This helps with better planning, cost estimation, and material management.

Whether you are designing a grand architectural dome or studying geometry, this calculator makes your work easier, faster, and more accurate.

Similar Posts

  • Ring Area Calculator – Find the Area of a Circular Ring Easily

    // Base64 Content var b64 = “PCFET0NUWVBFIGh0bWw+CjxodG1sIGxhbmc9ImVuIj4KCjxoZWFkPgogICAgPG1ldGEgY2hhcnNldD0iVVRGLTgiPgogICAgPG1ldGEgbmFtZT0idmlld3BvcnQiIGNvbnRlbnQ9IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xLjAiPgogICAgPHRpdGxlPlJpbmcgQXJlYSBDYWxjdWxhdG9yPC90aXRsZT4KICAgIDxzdHlsZT4KICAgICAgICA6cm9vdCB7CiAgICAgICAgICAgIC0tcHJpbWFyeTogIzU0NmU3YTsKICAgICAgICAgICAgLyogU3RlZWwgR3JleSAqLwogICAgICAgICAgICAtLXByaW1hcnktbGlnaHQ6ICNlY2VmZjE7CiAgICAgICAgICAgIC0tYWNjZW50OiAjZmY5ODAwOwogICAgICAgICAgICAvKiBJbmR1c3RyaWFsIE9yYW5nZSAqLwogICAgICAgICAgICAtLWJnLXBhZ2U6ICNmNWY3Zjg7CiAgICAgICAgICAgIC0tYmctY2FyZDogI2ZmZmZmZjsKICAgICAgICAgICAgLS10ZXh0OiAjMzc0NzRmOwogICAgICAgIH0KCiAgICAgICAgKiB7CiAgICAgICAgICAgIG1hcmdpbjogMDsKICAgICAgICAgICAgcGFkZGluZzogMDsKICAgICAgICAgICAgYm94LXNpemluZzogYm9yZGVyLWJveDsKICAgICAgICAgICAgZm9udC1mYW1pbHk6ICdTZWdvZSBVSScsIHN5c3RlbS11aSwgc2Fucy1zZXJpZjsKICAgICAgICB9CgogICAgICAgIGJvZHkgewogICAgICAgICAgICBiYWNrZ3JvdW5kOiB2YXIoLS1iZy1wYWdlKTsKICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAganVzdGlmeS1jb250ZW50OiBjZW50ZXI7CiAgICAgICAgICAgIHBhZGRpbmc6IDMwcHggMTVweDsKICAgICAgICAgICAgY29sb3I6IHZhcigtLXRleHQpOwogICAgICAgICAgICAvKiBSZW1vdmVkIG1pbi1oZWlnaHQ6IDEwMHZoIHRvIGF2b2lkIGJsYW5rIHNwYWNlcyBpbiBpZnJhbWVzICovCiAgICAgICAgfQoKICAgICAgICAuY2FsYy1jYXJkIHsKICAgICAgICAgICAgYmFja2dyb3VuZDogdmFyKC0tYmctY2FyZCk7CiAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDEycHg7CiAgICAgICAgICAgIGJveC1zaGFkb3c6IDAgNHB4IDIwcHggcmdiYSgwLCAwLCAwLCAwLjEpOwogICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgbWF4LXdpZHRoOiA4MDBweDsKICAgICAgICAgICAgcGFkZGluZzogMjVweDsKICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgZmxleC1kaXJlY3Rpb246IGNvbHVtbjsKICAgICAgICAgICAgZ2FwOiAyNXB4OwogICAgICAgIH0KCiAgICAgICAgLmhlYWRlciB7CiAgICAgICAgICAgIHRleHQtYWxpZ246IGNlbnRlcjsKICAgICAgICAgICAgbWFyZ2luLWJvdHRvbTogNXB4OwogICAgICAgIH0KCiAgICAgICAgLmhlYWRlciBoMiB7CiAgICAgICAgICAgIGNvbG9yOiB2YXIoLS1wcmltYXJ5KTsKICAgICAgICAgICAgZm9udC1zaXplOiAxLjZyZW07CiAgICAgICAgICAgIHRleHQtdHJhbnNmb3JtOiB1cHBlcmNhc2U7CiAgICAgICAgICAgIGxldHRlci1zcGFjaW5nOiAxcHg7CiAgICAgICAgfQoKICAgICAgICAuaGVhZGVyIHAgewogICAgICAgICAgICBjb2xvcjogIzkwYTRhZTsKICAgICAgICAgICAgZm9udC1zaXplOiAwLjlyZW07CiAgICAgICAgICAgIG1hcmdpbi10b3A6IDVweDsKICAgICAgICB9CgogICAgICAgIC5hcHAtbGF5b3V0IHsKICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgZmxleC13cmFwOiB3cmFwOwogICAgICAgICAgICBnYXA6IDMwcHg7CiAgICAgICAgfQoKICAgICAgICAuY29udHJvbHMgewogICAgICAgICAgICBmbGV4OiAxOwogICAgICAgICAgICBtaW4td2lkdGg6IDI4MHB4OwogICAgICAgICAgICBkaXNwbGF5OiBmbGV4OwogICAgICAgICAgICBmbGV4LWRpcmVjdGlvbjogY29sdW1uOwogICAgICAgICAgICBnYXA6IDE1cHg7CiAgICAgICAgfQoKICAgICAgICAudmlzLXBhbmVsIHsKICAgICAgICAgICAgZmxleDogMTsKICAgICAgICAgICAgbWluLXdpZHRoOiAyODBweDsKICAgICAgICAgICAgYmFja2dyb3VuZDogI2ZmZjsKICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2NmZDhkYzsKICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogOHB4OwogICAgICAgICAgICBkaXNwbGF5OiBmbGV4OwogICAgICAgICAgICBqdXN0aWZ5LWNvbnRlbnQ6IGNlbnRlcjsKICAgICAgICAgICAgYWxpZ24taXRlbXM6IGNlbnRlcjsKICAgICAgICAgICAgbWluLWhlaWdodDogMzAwcHg7CiAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICB9CgogICAgICAgIC50YWItZ3JwIHsKICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgYmFja2dyb3VuZDogI2VjZWZmMTsKICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogNnB4OwogICAgICAgICAgICBwYWRkaW5nOiA0cHg7CiAgICAgICAgICAgIG1hcmdpbi1ib3R0b206IDEwcHg7CiAgICAgICAgfQoKICAgICAgICAudGFiIHsKICAgICAgICAgICAgZmxleDogMTsKICAgICAgICAgICAgdGV4dC1hbGlnbjogY2VudGVyOwogICAgICAgICAgICBwYWRkaW5nOiA4cHg7CiAgICAgICAgICAgIGN1cnNvcjogcG9pbnRlcjsKICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogNHB4OwogICAgICAgICAgICBjb2xvcjogIzc4OTA5YzsKICAgICAgICAgICAgZm9udC13ZWlnaHQ6IDYwMDsKICAgICAgICAgICAgZm9udC1zaXplOiAwLjlyZW07CiAgICAgICAgICAgIHRyYW5zaXRpb246IDAuMnM7CiAgICAgICAgfQoKICAgICAgICAudGFiLmFjdGl2ZSB7CiAgICAgICAgICAgIGJhY2tncm91bmQ6ICNmZmY7CiAgICAgICAgICAgIGNvbG9yOiB2YXIoLS1wcmltYXJ5KTsKICAgICAgICAgICAgYm94LXNoYWRvdzogMCAycHggNXB4IHJnYmEoMCwgMCwgMCwgMC4wNSk7CiAgICAgICAgfQoKICAgICAgICAuaW5wdXQtcm93IHsKICAgICAgICAgICAgbWFyZ2luLWJvdHRvbTogMTBweDsKICAgICAgICB9CgogICAgICAgIC5pbnB1dC1yb3cgbGFiZWwgewogICAgICAgICAgICBkaXNwbGF5OiBibG9jazsKICAgICAgICAgICAgZm9udC1zaXplOiAwLjg1cmVtOwogICAgICAgICAgICBmb250LXdlaWdodDogNzAwOwogICAgICAgICAgICBjb2xvcjogIzU0NmU3YTsKICAgICAgICAgICAgbWFyZ2luLWJvdHRvbTogNXB4OwogICAgICAgIH0KCiAgICAgICAgLmlucHV0LXdyYXAgewogICAgICAgICAgICBwb3NpdGlvbjogcmVsYXRpdmU7CiAgICAgICAgICAgIGJhY2tncm91bmQ6ICNmYmZiZmI7CiAgICAgICAgICAgIGJvcmRlcjogMXB4IHNvbGlkICNjZmQ4ZGM7CiAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDVweDsKICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgYWxpZ24taXRlbXM6IGNlbnRlcjsKICAgICAgICB9CgogICAgICAgIC5pbnB1dC13cmFwOmZvY3VzLXdpdGhpbiB7CiAgICAgICAgICAgIGJvcmRlci1jb2xvcjogdmFyKC0tYWNjZW50KTsKICAgICAgICB9CgogICAgICAgIGlucHV0IHsKICAgICAgICAgICAgd2lkdGg6IDEwMCU7CiAgICAgICAgICAgIGJvcmRlcjogbm9uZTsKICAgICAgICAgICAgYmFja2dyb3VuZDogdHJhbnNwYXJlbnQ7CiAgICAgICAgICAgIHBhZGRpbmc6IDEwcHg7CiAgICAgICAgICAgIGZvbnQtc2l6ZTogMXJlbTsKICAgICAgICAgICAgb3V0bGluZTogbm9uZTsKICAgICAgICAgICAgY29sb3I6ICMyNjMyMzg7CiAgICAgICAgfQoKICAgICAgICAudW5pdCB7CiAgICAgICAgICAgIHBhZGRpbmc6IDAgMTBweDsKICAgICAgICAgICAgY29sb3I6ICM5MGE0YWU7CiAgICAgICAgICAgIGZvbnQtc2l6ZTogMC44cmVtOwogICAgICAgICAgICBmb250LXdlaWdodDogYm9sZDsKICAgICAgICB9CgogICAgICAgIC5zdGF0LWdyaWQgewogICAgICAgICAgICBkaXNwbGF5OiBncmlkOwogICAgICAgICAgICBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IDFmciAxZnI7CiAgICAgICAgICAgIGdhcDogMTBweDsKICAgICAgICAgICAgbWFyZ2luLXRvcDogMTBweDsKICAgICAgICB9CgogICAgICAgIC5zdGF0LWJveCB7CiAgICAgICAgICAgIGJhY2tncm91bmQ6ICNlY2VmZjE7CiAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDZweDsKICAgICAgICAgICAgdGV4dC1hbGlnbjogY2VudGVyOwogICAgICAgIH0KCiAgICAgICAgLnN0YXQtdmFsIHsKICAgICAgICAgICAgZm9udC1zaXplOiAxLjNyZW07CiAgICAgICAgICAgIGZvbnQtd2VpZ2h0OiA3MDA7CiAgICAgICAgICAgIGNvbG9yOiB2YXIoLS1wcmltYXJ5KTsKICAgICAgICB9CgogICAgICAgIC5zdGF0LWxibCB7CiAgICAgICAgICAgIGZvbnQtc2l6ZTogMC43NXJlbTsKICAgICAgICAgICAgY29sb3I6ICM3ODkwOWM7CiAgICAgICAgICAgIHRleHQtdHJhbnNmb3JtOiB1cHBlcmNhc2U7CiAgICAgICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOwogICAgICAgICAgICBtYXJnaW4tdG9wOiA0cHg7CiAgICAgICAgfQoKICAgICAgICAuc3RhdC1tYWluIHsKICAgICAgICAgICAgZ3JpZC1jb2x1bW46IHNwYW4gMjsKICAgICAgICAgICAgYmFja2dyb3VuZDogI2ZmZjNlMDsKICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2ZmZTBiMjsKICAgICAgICB9CgogICAgICAgIC5zdGF0LW1haW4gLnN0YXQtdmFsIHsKICAgICAgICAgICAgY29sb3I6ICNlNjUxMDA7CiAgICAgICAgICAgIGZvbnQtc2l6ZTogMS44cmVtOwogICAgICAgIH0KCiAgICAgICAgLnN0YXQtbWFpbiAuc3RhdC1sYmwgewogICAgICAgICAgICBjb2xvcjogI2VmNmMwMDsKICAgICAgICB9CgogICAgICAgIC5lcnItbXNnIHsKICAgICAgICAgICAgY29sb3I6ICNkMzJmMmY7CiAgICAgICAgICAgIGZvbnQtc2l6ZTogMC44NXJlbTsKICAgICAgICAgICAgdGV4dC1hbGlnbjogY2VudGVyOwogICAgICAgICAgICBtaW4taGVpZ2h0OiAyMHB4OwogICAgICAgICAgICBmb250LXdlaWdodDogNjAwOwogICAgICAgIH0KCiAgICAgICAgLyogU1ZHICovCiAgICAgICAgc3ZnIHsKICAgICAgICAgICAgd2lkdGg6IDkwJTsKICAgICAgICAgICAgaGVpZ2h0OiA5MCU7CiAgICAgICAgICAgIG92ZXJmbG93OiB2aXNpYmxlOwogICAgICAgIH0KCiAgICAgICAgLnJpbmctc2hhcGUgewogICAgICAgICAgICBmaWxsOiByZ2JhKDg0LCAxMTAsIDEyMiwgMC4yKTsKICAgICAgICAgICAgc3Ryb2tlOiB2YXIoLS1wcmltYXJ5KTsKICAgICAgICAgICAgc3Ryb2tlLXdpZHRoOiAyOwogICAgICAgICAgICBmaWxsLXJ1bGU6IGV2ZW5vZGQ7CiAgICAgICAgfQoKICAgICAgICAubGluZS1yIHsKICAgICAgICAgICAgc3Ryb2tlOiB2YXIoLS1hY2NlbnQpOwogICAgICAgICAgICBzdHJva2Utd2lkdGg6IDI7CiAgICAgICAgICAgIG1hcmtlci1lbmQ6IHVybCgjYXJyb3cpOwogICAgICAgIH0KCiAgICAgICAgLnRleHQtZGltIHsKICAgICAgICAgICAgZmlsbDogdmFyKC0tcHJpbWFyeSk7CiAgICAgICAgICAgIGZvbnQtc2l6ZTogMTJweDsKICAgICAgICAgICAgZm9udC13ZWlnaHQ6IGJvbGQ7CiAgICAgICAgICAgIHRleHQtYW5jaG9yOiBtaWRkbGU7CiAgICAgICAgfQogICAgPC9zdHlsZT4KPC9oZWFkPgoKPGJvZHk+CgogICAgPGRpdiBjbGFzcz0iY2FsYy1jYXJkIj4KICAgICAgICA8ZGl2IGNsYXNzPSJoZWFkZXIiPgogICAgICAgICAgICA8aDI+UmluZyBBcmVhIENhbGN1bGF0b3I8L2gyPgogICAgICAgICAgICA8cD5DYWxjdWxhdGUgYXJlYSBvZiBhbiBBbm51bHVzIChXYXNoZXIpPC9wPgogICAgICAgIDwvZGl2PgoKICAgICAgICA8ZGl2IGNsYXNzPSJhcHAtbGF5b3V0Ij4KICAgICAgICAgICAgPCEtLSBJbnB1dCBTZWN0aW9uIC0tPgogICAgICAgICAgICA8ZGl2IGNsYXNzPSJjb250cm9scyI+CiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJ0YWItZ3JwIj4KICAgICAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJ0YWIgYWN0aXZlIiBvbmNsaWNrPSJzZXRNb2RlKCdyYWRpdXMnKSI+UmFkaXVzIChSLCByKTwvZGl2PgogICAgICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9InRhYiIgb25jbGljaz0ic2V0TW9kZSgnZGlhbWV0ZXInKSI+RGlhbWV0ZXIgKEQsIGQpPC9kaXY+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJpbnB1dC1yb3ciPgogICAgICAgICAgICAgICAgICAgIDxsYWJlbCBpZD0ibGJsX291dGVyIj5PdXRlciBSYWRpdXMgKFIpPC9sYWJlbD4KICAgICAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJpbnB1dC13cmFwIj4KICAgICAgICAgICAgICAgICAgICAgICAgPGlucHV0IHR5cGU9Im51bWJlciIgaWQ9ImlucF9vdXQiIHZhbHVlPSIyMCIgb25pbnB1dD0iY2FsY3VsYXRlKCkiPgogICAgICAgICAgICAgICAgICAgICAgICA8c3BhbiBjbGFzcz0idW5pdCI+dW5pdHM8L3NwYW4+CiAgICAgICAgICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJpbnB1dC1yb3ciPgogICAgICAgICAgICAgICAgICAgIDxsYWJlbCBpZD0ibGJsX2lubmVyIj5Jbm5lciBSYWRpdXMgKHIpPC9sYWJlbD4KICAgICAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJpbnB1dC13cmFwIj4KICAgICAgICAgICAgICAgICAgICAgICAgPGlucHV0IHR5cGU9Im51bWJlciIgaWQ9ImlucF9pbiIgdmFsdWU9IjEwIiBvbmlucHV0PSJjYWxjdWxhdGUoKSI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxzcGFuIGNsYXNzPSJ1bml0Ij51bml0czwvc3Bhbj4KICAgICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgIDwvZGl2PgoKICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9ImVyci1tc2ciIGlkPSJlcnJfbXNnIj48L2Rpdj4KCiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJzdGF0LWdyaWQiPgogICAgICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9InN0YXQtYm94IHN0YXQtbWFpbiI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9InN0YXQtdmFsIiBpZD0icmVzX2FyZWEiPi0tPC9kaXY+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9InN0YXQtbGJsIj5SaW5nIEFyZWE8L2Rpdj4KICAgICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJzdGF0LWJveCI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9InN0YXQtdmFsIiBpZD0icmVzX3BlcmltIj4tLTwvZGl2PgogICAgICAgICAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJzdGF0LWxibCI+VG90YWwgUGVyaW1ldGVyPC9kaXY+CiAgICAgICAgICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgICAgICAgPGRpdiBjbGFzcz0ic3RhdC1ib3giPgogICAgICAgICAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJzdGF0LXZhbCIgaWQ9InJlc190aGljayI+LS08L2Rpdj4KICAgICAgICAgICAgICAgICAgICAgICAgPGRpdiBjbGFzcz0ic3RhdC1sYmwiPlRoaWNrbmVzcyAodyk8L2Rpdj4KICAgICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgIDwhLS0gVmlzdWFsaXphdGlvbiAtLT4KICAgICAgICAgICAgPGRpdiBjbGFzcz0idmlzLXBhbmVsIj4KICAgICAgICAgICAgICAgIDxzdmcgdmlld0JveD0iLTExMCAtMTEwIDIyMCAyMjAiPgogICAgICAgICAgICAgICAgICAgIDxkZWZzPgogICAgICAgICAgICAgICAgICAgICAgICA8bWFya2VyIGlkPSJhcnJvdyIgbWFya2VyV2lkdGg9IjYiIG1hcmtlckhlaWdodD0iNiIgcmVmWD0iNSIgcmVmWT0iMyIgb3JpZW50PSJhdXRvIj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0wLDAgTDYsMyBMMCw2IEwxLDMgeiIgZmlsbD0iI2ZmOTgwMCIgLz4KICAgICAgICAgICAgICAgICAgICAgICAgPC9tYXJrZXI+CiAgICAgICAgICAgICAgICAgICAgPC9kZWZzPgoKICAgICAgICAgICAgICAgICAgICA8IS0tIFBhdGggZm9yIEFubnVsdXMgLS0+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggaWQ9InNoYXBlIiBjbGFzcz0icmluZy1zaGFwZSIgZD0iIiAvPgoKICAgICAgICAgICAgICAgICAgICA8IS0tIERpbWVuc2lvbnMgLS0+CiAgICAgICAgICAgICAgICAgICAgPGxpbmUgaWQ9ImRpbV9vdXQiIGNsYXNzPSJsaW5lLXIiIHgxPSIwIiB5MT0iMCIgeDI9IjAiIHkyPSIwIiBvcGFjaXR5PSIwIiAvPgogICAgICAgICAgICAgICAgICAgIDx0ZXh0IGlkPSJ0eHRfb3V0IiBjbGFzcz0idGV4dC1kaW0iIHg9IjAiIHk9IjAiIG9wYWNpdHk9IjAiPlI8L3RleHQ+CgogICAgICAgICAgICAgICAgICAgIDxsaW5lIGlkPSJkaW1faW4iIGNsYXNzPSJsaW5lLXIiIHgxPSIwIiB5MT0iMCIgeDI9IjAiIHkyPSIwIiBvcGFjaXR5PSIwIiAvPgogICAgICAgICAgICAgICAgICAgIDx0ZXh0IGlkPSJ0eHRfaW4iIGNsYXNzPSJ0ZXh0LWRpbSIgeD0iMCIgeT0iMCIgb3BhY2l0eT0iMCI+cjwvdGV4dD4KCiAgICAgICAgICAgICAgICAgICAgPGNpcmNsZSBjeD0iMCIgY3k9IjAiIHI9IjIiIGZpbGw9IiMzNzQ3NGYiIC8+CiAgICAgICAgICAgICAgICA8L3N2Zz4KICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgPC9kaXY+CiAgICA8L2Rpdj4KCiAgICA8c2NyaXB0PgogICAgICAgIGxldCBtb2RlID0gJ3JhZGl1cyc7CgogICAgICAgIGZ1bmN0aW9uIHNldE1vZGUobSkgewogICAgICAgICAgICBtb2RlID0gbTsKICAgICAgICAgICAgZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgnLnRhYicpLmZvckVhY2godCA9PiB0LmNsYXNzTGlzdC5yZW1vdmUoJ2FjdGl2ZScpKTsKICAgICAgICAgICAgZG9jdW1lbnQucXVlcnlTZWxlY3RvcihgLnRhYltvbmNsaWNrPSJzZXRNb2RlKCcke219JykiXWApLmNsYXNzTGlzdC5hZGQoJ2FjdGl2ZScpOwoKICAgICAgICAgICAgaWYgKG1vZGUgPT09ICdyYWRpdXMnKSB7CiAgICAgICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbGJsX291dGVyJykuaW5uZXJUZXh0ID0gJ091dGVyIFJhZGl1cyAoUiknOwogICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ2xibF9pbm5lcicpLmlubmVyVGV4dCA9ICdJbm5lciBSYWRpdXMgKHIpJzsKICAgICAgICAgICAgfSBlbHNlIHsKICAgICAgICAgICAgICAgIGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdsYmxfb3V0ZXInKS5pbm5lclRleHQgPSAnT3V0ZXIgRGlhbWV0ZXIgKEQpJzsKICAgICAgICAgICAgICAgIGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdsYmxfaW5uZXInKS5pbm5lclRleHQgPSAnSW5uZXIgRGlhbWV0ZXIgKGQpJzsKICAgICAgICAgICAgfQogICAgICAgICAgICBjYWxjdWxhdGUoKTsKICAgICAgICB9CgogICAgICAgIGZ1bmN0aW9uIGNhbGN1bGF0ZSgpIHsKICAgICAgICAgICAgY29uc3Qgb3V0VmFsID0gcGFyc2VGbG9hdChkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnaW5wX291dCcpLnZhbHVlKTsKICAgICAgICAgICAgY29uc3QgaW5WYWwgPSBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdpbnBfaW4nKS52YWx1ZSk7CgogICAgICAgICAgICBpZiAoaXNOYU4ob3V0VmFsKSB8fCBpc05hTihpblZhbCkpIHJldHVybjsKCiAgICAgICAgICAgIGxldCBSLCByOwoKICAgICAgICAgICAgaWYgKG1vZGUgPT09ICdyYWRpdXMnKSB7CiAgICAgICAgICAgICAgICBSID0gb3V0VmFsOwogICAgICAgICAgICAgICAgciA9IGluVmFsOwogICAgICAgICAgICB9IGVsc2UgewogICAgICAgICAgICAgICAgUiA9IG91dFZhbCAvIDI7CiAgICAgICAgICAgICAgICByID0gaW5WYWwgLyAyOwogICAgICAgICAgICB9CgogICAgICAgICAgICBjb25zdCBlcnIgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnZXJyX21zZycpOwogICAgICAgICAgICBpZiAociA+PSBSKSB7CiAgICAgICAgICAgICAgICBlcnIuaW5uZXJUZXh0ID0gbW9kZSA9PT0gJ3JhZGl1cycgPyAiT3V0ZXIgUmFkaXVzIG11c3QgYmUgPiBJbm5lciBSYWRpdXMiIDogIk91dGVyIERpYW1ldGVyIG11c3QgYmUgPiBJbm5lciBEaWFtZXRlciI7CiAgICAgICAgICAgICAgICAvLyBDbGVhciByZXN1bHRzPyBPciBzaG93IHdoYXQgd2UgY2FuCiAgICAgICAgICAgICAgICAvLyBJbnZhbGlkIGdlb21ldHJ5CiAgICAgICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnc2hhcGUnKS5zZXRBdHRyaWJ1dGUoJ2QnLCAnJyk7CiAgICAgICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgncmVzX2FyZWEnKS5pbm5lclRleHQgPSAnLS0nOwogICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICB9IGVsc2UgewogICAgICAgICAgICAgICAgZXJyLmlubmVyVGV4dCA9ICIiOwogICAgICAgICAgICB9CgogICAgICAgICAgICAvLyBDYWxjcwogICAgICAgICAgICBjb25zdCBBcmVhID0gTWF0aC5QSSAqIChSICogUiAtIHIgKiByKTsKICAgICAgICAgICAgY29uc3QgUGVyaW0gPSAyICogTWF0aC5QSSAqIChSICsgcik7CiAgICAgICAgICAgIGNvbnN0IFRoaWNrID0gUiAtIHI7CgogICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgncmVzX2FyZWEnKS5pbm5lclRleHQgPSBBcmVhLnRvRml4ZWQoMik7CiAgICAgICAgICAgIGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdyZXNfcGVyaW0nKS5pbm5lclRleHQgPSBQZXJpbS50b0ZpeGVkKDIpOwogICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgncmVzX3RoaWNrJykuaW5uZXJUZXh0ID0gVGhpY2sudG9GaXhlZCgyKTsKCiAgICAgICAgICAgIGRyYXcoUiwgcik7CiAgICAgICAgfQoKICAgICAgICBmdW5jdGlvbiBkcmF3KFIsIHIpIHsKICAgICAgICAgICAgLy8gRHJhdyBjZW50ZXJlZCBhdCAwLDAKICAgICAgICAgICAgLy8gTWF4IHZpZXcgaXMgLTEwMCB0byAxMDAgc28gUm1heCB+IDkwCiAgICAgICAgICAgIGNvbnN0IG1heFIgPSBSOwogICAgICAgICAgICBjb25zdCBzY2FsZSA9IDk1IC8gbWF4UjsKCiAgICAgICAgICAgIGNvbnN0IHNSID0gUiAqIHNjYWxlOwogICAgICAgICAgICBjb25zdCBzciA9IHIgKiBzY2FsZTsKCiAgICAgICAgICAgIC8vIEFubnVsdXMgUGF0aCB1c2luZyBTVkcgcGF0aCBhcmMgY29tbWFuZHMgCiAgICAgICAgICAgIC8vIE1vdmUgdG8gKFIsIDApLCBBcmMgdG8gKC1SLCAwKSwgQXJjIHRvIChSLCAwKQogICAgICAgICAgICAvLyBNb3ZlIHRvIChyLCAwKSwgQXJjIHRvICgtciwgMCksIEFyYyB0byAociwgMCkgKFJldmVyc2UgZGlyZWN0aW9uIGZvciBob2xlPykKICAgICAgICAgICAgLy8gT3Igc2ltcGxlcjogQ2lyY2xlIFIsIGhvbGUgQ2lyY2xlIHIuIFNWRyAnZXZlbm9kZCcgcnVsZSBoYW5kbGVzIGhvbGUgaWYgZGlyZWN0aW9uIGlzIHNhbWU/CiAgICAgICAgICAgIC8vIEFjdHVhbGx5LCBjcmVhdGluZyBjb21wb3VuZCBwYXRoOgogICAgICAgICAgICAvLyBNIGN4LGN5LVIgQSBSLFIgMCAxLDAgY3gsY3krUiBBIFIsUiAwIDEsMCBjeCxjeS1SCiAgICAgICAgICAgIC8vIE0gY3gsY3ktciBBIHIsciAwIDEsMSBjeCxjeStyIEEgcixyIDAgMSwxIGN4LGN5LXIgKENvdW50ZXIgY2xvY2t3aXNlIGlubmVyKQoKICAgICAgICAgICAgLy8gT3V0ZXIgQ2lyY2xlIChDbG9ja3dpc2UpCiAgICAgICAgICAgIGNvbnN0IGRPdXQgPSBgTSAwLC0ke3NSfSBBICR7c1J9LCR7c1J9IDAgMSwxIDAsJHtzUn0gQSAke3NSfSwke3NSfSAwIDEsMSAwLC0ke3NSfSBaYDsKICAgICAgICAgICAgLy8gSW5uZXIgQ2lyY2xlIChDb3VudGVyIENsb2Nrd2lzZSB0byBtYWtlIGEgaG9sZSB3aXRoIG5vbnplcm8gcnVsZSwgb3IganVzdCBzZXBhcmF0ZSBzdWJwYXRoIHdpdGggZXZlbm9kZCkKICAgICAgICAgICAgY29uc3QgZEluID0gYE0gMCwtJHtzcn0gQSAke3NyfSwke3NyfSAwIDEsMCAwLCR7c3J9IEEgJHtzcn0sJHtzcn0gMCAxLDAgMCwtJHtzcn0gWmA7CgogICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnc2hhcGUnKS5zZXRBdHRyaWJ1dGUoJ2QnLCBkT3V0ICsgIiAiICsgZEluKTsKCiAgICAgICAgICAgIC8vIERyYXcgZGltZW5zaW9uIGxpbmUgZm9yIFIKICAgICAgICAgICAgLy8gQW5nbGVkIGF0IC00NSBkZWcKICAgICAgICAgICAgY29uc3QgYW5nID0gLU1hdGguUEkgLyA0OwogICAgICAgICAgICBjb25zdCBjb3MgPSBNYXRoLmNvcyhhbmcpLCBzaW4gPSBNYXRoLnNpbihhbmcpOwoKICAgICAgICAgICAgY29uc3QgbFIgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnZGltX291dCcpOwogICAgICAgICAgICBsUi5zZXRBdHRyaWJ1dGUoJ3gxJywgMCk7IGxSLnNldEF0dHJpYnV0ZSgneTEnLCAwKTsKICAgICAgICAgICAgbFIuc2V0QXR0cmlidXRlKCd4MicsIHNSICogY29zKTsgbFIuc2V0QXR0cmlidXRlKCd5MicsIHNSICogc2luKTsKICAgICAgICAgICAgbFIuc2V0QXR0cmlidXRlKCdvcGFjaXR5JywgMSk7CgogICAgICAgICAgICBjb25zdCB0UiA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd0eHRfb3V0Jyk7CiAgICAgICAgICAgIHRSLnNldEF0dHJpYnV0ZSgneCcsIChzUiAvIDIgKyAxMCkgKiBjb3MpOwogICAgICAgICAgICB0Ui5zZXRBdHRyaWJ1dGUoJ3knLCAoc1IgLyAyICsgMTApICogc2luKTsKICAgICAgICAgICAgdFIuc2V0QXR0cmlidXRlKCdvcGFjaXR5JywgMSk7CiAgICAgICAgICAgIHRSLnRleHRDb250ZW50ID0gKG1vZGUgPT09ICdyYWRpdXMnID8gJ1InIDogJ0QvMicpOwoKICAgICAgICAgICAgLy8gRGltIGxpbmUgZm9yIHIKICAgICAgICAgICAgLy8gQW5nbGVkIGF0IC0xMzUgZGVnCiAgICAgICAgICAgIGNvbnN0IGFuZzIgPSAtMyAqIE1hdGguUEkgLyA0OwogICAgICAgICAgICBjb25zdCBjb3MyID0gTWF0aC5jb3MoYW5nMiksIHNpbjIgPSBNYXRoLnNpbihhbmcyKTsKCiAgICAgICAgICAgIGNvbnN0IGxyID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ2RpbV9pbicpOwogICAgICAgICAgICBsci5zZXRBdHRyaWJ1dGUoJ3gxJywgMCk7IGxyLnNldEF0dHJpYnV0ZSgneTEnLCAwKTsKICAgICAgICAgICAgbHIuc2V0QXR0cmlidXRlKCd4MicsIHNyICogY29zMik7IGxyLnNldEF0dHJpYnV0ZSgneTInLCBzciAqIHNpbjIpOwogICAgICAgICAgICBsci5zZXRBdHRyaWJ1dGUoJ29wYWNpdHknLCAxKTsKCiAgICAgICAgICAgIGNvbnN0IHRyID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3R4dF9pbicpOwogICAgICAgICAgICB0ci5zZXRBdHRyaWJ1dGUoJ3gnLCAoc3IgLyAyKSAqIGNvczIpOyAvLyBUZXh0IG5lYXIgY2VudGVyIG9mIGxpbmUKICAgICAgICAgICAgdHIuc2V0QXR0cmlidXRlKCd5JywgKHNyIC8gMikgKiBzaW4yIC0gNSk7CiAgICAgICAgICAgIHRyLnNldEF0dHJpYnV0ZSgnb3BhY2l0eScsIDEpOwogICAgICAgICAgICB0ci50ZXh0Q29udGVudCA9IChtb2RlID09PSAncmFkaXVzJyA/ICdyJyA6ICdkLzInKTsKICAgICAgICB9CgogICAgICAgIC8vIEluaXQKICAgICAgICBjYWxjdWxhdGUoKTsKCiAgICA8L3NjcmlwdD4KPC9ib2R5PgoKPC9odG1sPg==”; var htmlContent = “”; try { htmlContent = atob(b64); } catch (e) { console.error(“Base64 decode failed”, e); wrapper.innerHTML = ” Error loading calculator. “; return; } // Create Iframe var iframe = document.createElement(‘iframe’); iframe.style.width = “100%”; iframe.style.border = “none”; iframe.style.overflow = “hidden”; iframe.scrolling = “no”; iframe.style.minHeight = “400px”;…

  • Second Moment of Area Calculator – Quick Structural Section MOI Tool

    Second Moment of Area Calculator Second Moment of Area Calculator Calculate Moment of Inertia (I), Centroid (C), and Area (A) Rect Box Circle Tube I-Beam T-Beam Channel Dimensions Properties mmincmmft Ix (About X-Axis) 0 mm⁴ Iy (About Y-Axis) 0 mm⁴ Area (A) 0 mm² Centroid (Cx, Cy) 0, 0 from bottom-left (mm) Explanation: Ix: Resistance…

  • Reverse Area Calculator | How to Find Quickly

    Reverse Area Calculator Reverse Area Calculator Find dimensions from known Area. Select Shape SquareCircleRectangleTriangleParallelogram Total Area sq units Known Dimension Resulting Dimension — Perimeter — — — Calculates missing dimensions assuming standard geometric formulas. In many real-life situations, you already know the area of a space, but you do not know the exact length, width,…

  • General Prism Calculator — Volume & Surface Area of Any Prism

    General Prism Surface Area Calculator General Prism Calc Calculate Surface Area & Volume for any Regular Prism. 1. Select Base Shape Triangle Rectangle Pentagon Hexagon Octagon Custom Prism Length/Height (H) inftcmm Open Prism (No Top/Bottom Faces) Total Surface Area — sq in Base Area — sq in Lateral Area — sq in Volume — cu…