Hypotenuse Calculator – Instantly Find the Longest Side

Hypotenuse Calculator

Calculate the hypotenuse or missing side of a right triangle using known legs and/or angles.

In geometry, the right triangle is one of the most important shapes. It appears in school mathematics, construction work, engineering designs, and many real‑life measurement problems.

A right triangle has one angle that is exactly 90 degrees. The side opposite this right angle is called the hypotenuse, and it is always the longest side of the triangle.

Finding the hypotenuse by hand requires using a special formula known as the Pythagorean Theorem. While this formula is simple, manual calculations can still take time and lead to mistakes.

The Hypotenuse Calculator makes this process fast and accurate. By entering the two shorter sides of the triangle, you can instantly find the length of the hypotenuse.

This tool is helpful for students, teachers, engineers, builders, and anyone who works with right triangles.

What the Hypotenuse Calculator Is

A Right Triangle Solver

The Hypotenuse Calculator is an online geometry tool designed to find the longest side of a right triangle. It works specifically with triangles that have one 90‑degree angle.

To use the calculator, you usually enter:

  • The length of the first leg (side a)

  • The length of the second leg (side b)

The calculator then computes:

  • The hypotenuse (side c)

What the Calculator Can Find

The main result provided is:

  • The hypotenuse length

Some versions of the calculator may also show:

  • Step‑by‑step calculations

  • Triangle area

  • Other side lengths

All results are based on standard geometry rules.

How the Hypotenuse Calculator Works

Step 1: Enter the Two Legs

You start by entering the lengths of the two shorter sides of the right triangle. These sides must be perpendicular to each other.

Step 2: Apply the Pythagorean Theorem

The calculator uses the Pythagorean Theorem to find the hypotenuse.

Step 3: Display the Result

The tool calculates the square root of the sum of the squares of the two legs and shows the hypotenuse instantly.

This saves time and avoids manual calculation errors.

Key Formula Used

Pythagorean Theorem

The basic formula for a right triangle is:

a^2 + b^2 = c^2

Here:

  • (a) and (b) are the two shorter sides (legs)

  • (c) is the hypotenuse

Hypotenuse Formula

To find the hypotenuse, the formula is rearranged as:

c = \sqrt{a^2 + b^2}

This is the main equation used by the calculator.

Step‑by‑Step Example

Given Values

  • a = 6 units

  • b = 8 units

Step 1: Square the Legs

a^2 = 6^2 = 36 b^2 = 8^2 = 64

Step 2: Add the Squares

a^2 + b^2 = 36 + 64 = 100

Step 3: Take the Square Root

c = \sqrt{100} = 10

So, the hypotenuse is 10 units.

The calculator performs these steps instantly.

Features of the Hypotenuse Calculator

Fast and Accurate Results

The calculator gives instant answers using a trusted mathematical formula. This removes the risk of calculation mistakes.

Simple Input System

You only need to enter two values, making the tool easy to use for beginners.

Works for All Right Triangles

As long as the triangle has a 90‑degree angle, the calculator will work correctly.

No Manual Math Required

You do not need to square numbers or find square roots yourself. The tool does everything for you.

Uses and Applications

Education and Homework

Students use the hypotenuse calculator to solve right triangle problems quickly and check their answers. It helps them understand how the Pythagorean Theorem works in real examples.

Construction and Carpentry

Builders and carpenters often measure diagonal distances, such as roof slopes and stair lengths. The calculator helps them find accurate measurements.

Engineering and Design

Engineers use right triangle calculations in mechanical designs, layouts, and structural planning. The calculator improves speed and precision.

Tips to Avoid Common Mistakes

Many users forget that the hypotenuse only exists in right triangles. If the triangle does not have a 90‑degree angle, the Pythagorean Theorem cannot be used. Always make sure your triangle is a right triangle before using the calculator.

Another common mistake is entering the hypotenuse as one of the input sides. The calculator expects the two shorter perpendicular sides, not the longest side. Make sure you are entering the correct legs of the triangle.

Some users mix up measurement units. If one side is in meters and the other is in feet, the result will not make sense. Always use the same unit for both sides.

Typing errors can also cause incorrect results. Even a small mistake in entering a number can change the hypotenuse value. Double‑check your inputs before calculating.

Finally, avoid rounding numbers too early. Let the calculator handle the full calculation to keep the result accurate.

FAQs

What is the hypotenuse?

The hypotenuse is the longest side of a right triangle, opposite the 90‑degree angle.

Can this calculator work for non‑right triangles?

No, it is designed only for right triangles.

What formula does it use?

It uses the Pythagorean Theorem.

Is the calculator free to use?

Most hypotenuse calculators are available for free online.

Final Words

The Hypotenuse Calculator is a simple and powerful tool for solving right triangle problems. It helps you find the longest side quickly using the Pythagorean Theorem.

Whether you are a student, builder, or engineer, this calculator saves time, improves accuracy, and makes geometry easier to understand.

Similar Posts

  • Vector Triangle Calculator — Calculate Resultant Vector & Components Fast

    Vector Triangle Calculator Calculate resultant vectors and components. Solve By Resultant of 2 VectorsX/Y ComponentsResultant of N VectorsVector Subtraction Vector A Magnitude Vector A Direction (°) Vector B Magnitude Vector B Direction (°) Vector Magnitude Vector Direction (°) Number of Vectors (Will show dynamic inputs below) Vector A Magnitude Vector A Direction (°) Vector B…

  • Triangle Area 3D Coordinates Calculator — Find Area from XYZ Points

    Triangle Area Calculator (3D Coordinates) Point A Point B Point C Select Unit mmcmminft Calculate Area Formula Used: Area = ½ × ‖(B − A) × (C − A)‖ Cross product magnitude gives parallelogram area; rectangle area is half.   In many real-world fields like engineering, physics, computer graphics, and 3D modeling, shapes are not…

  • Missing Side of Triangle Calculator – Find Side Length Instantly

    // Base64 Content var b64 = “PCFET0NUWVBFIGh0bWw+CjxodG1sIGxhbmc9ImVuIj4KCjxoZWFkPgogICAgPG1ldGEgY2hhcnNldD0iVVRGLTgiPgogICAgPG1ldGEgbmFtZT0idmlld3BvcnQiIGNvbnRlbnQ9IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xLjAiPgogICAgPHRpdGxlPk1pc3NpbmcgU2lkZSBvZiBUcmlhbmdsZSBDYWxjdWxhdG9yPC90aXRsZT4KPC9oZWFkPgoKPGJvZHk+CgogICAgPCEtLSBNaXNzaW5nIFNpZGUgb2YgVHJpYW5nbGUgQ2FsY3VsYXRvciBTdGFydCAtLT4KICAgIDxkaXYgaWQ9Im1zdGMtY29udGFpbmVyIiBjbGFzcz0ibXN0Yy13cmFwcGVyIj4KICAgICAgICA8c3R5bGU+CiAgICAgICAgICAgIC5tc3RjLXdyYXBwZXIgewogICAgICAgICAgICAgICAgZm9udC1mYW1pbHk6ICdTZWdvZSBVSScsIFJvYm90bywgSGVsdmV0aWNhLCBBcmlhbCwgc2Fucy1zZXJpZjsKICAgICAgICAgICAgICAgIG1heC13aWR0aDogODAwcHg7CiAgICAgICAgICAgICAgICBtYXJnaW46IDAgYXV0bzsKICAgICAgICAgICAgICAgIGJhY2tncm91bmQ6ICNmZmY7CiAgICAgICAgICAgICAgICBwYWRkaW5nOiAzMHB4OwogICAgICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogMTJweDsKICAgICAgICAgICAgICAgIGJveC1zaGFkb3c6IDAgNHB4IDIwcHggcmdiYSgwLCAwLCAwLCAwLjA4KTsKICAgICAgICAgICAgICAgIGJveC1zaXppbmc6IGJvcmRlci1ib3g7CiAgICAgICAgICAgICAgICBjb2xvcjogIzMzMzsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtd3JhcHBlciAqIHsKICAgICAgICAgICAgICAgIGJveC1zaXppbmc6IGluaGVyaXQ7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC5tc3RjLWhlYWRlciB7CiAgICAgICAgICAgICAgICB0ZXh0LWFsaWduOiBjZW50ZXI7CiAgICAgICAgICAgICAgICBtYXJnaW4tYm90dG9tOiAzMHB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1oZWFkZXIgaDIgewogICAgICAgICAgICAgICAgbWFyZ2luOiAwIDAgNXB4IDA7CiAgICAgICAgICAgICAgICBjb2xvcjogIzhlNDRhZDsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMjZweDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtc3VidGl0bGUgewogICAgICAgICAgICAgICAgY29sb3I6ICM5YjU5YjY7CiAgICAgICAgICAgICAgICBmb250LXNpemU6IDE0cHg7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZjRlY2Y3OwogICAgICAgICAgICAgICAgcGFkZGluZzogNHB4IDEycHg7CiAgICAgICAgICAgICAgICBib3JkZXItcmFkaXVzOiAxNXB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogaW5saW5lLWJsb2NrOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1ncmlkIHsKICAgICAgICAgICAgICAgIGRpc3BsYXk6IGdyaWQ7CiAgICAgICAgICAgICAgICBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IDFmciAxZnI7CiAgICAgICAgICAgICAgICBnYXA6IDQwcHg7CiAgICAgICAgICAgICAgICBhbGlnbi1pdGVtczogc3RhcnQ7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIEBtZWRpYSAobWF4LXdpZHRoOiA3MDBweCkgewogICAgICAgICAgICAgICAgLm1zdGMtZ3JpZCB7CiAgICAgICAgICAgICAgICAgICAgZ3JpZC10ZW1wbGF0ZS1jb2x1bW5zOiAxZnI7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC5tc3RjLWNvbnRyb2xzIHsKICAgICAgICAgICAgICAgIGRpc3BsYXk6IGZsZXg7CiAgICAgICAgICAgICAgICBmbGV4LWRpcmVjdGlvbjogY29sdW1uOwogICAgICAgICAgICAgICAgZ2FwOiAyMHB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1sYWJlbCB7CiAgICAgICAgICAgICAgICBmb250LXdlaWdodDogNjAwOwogICAgICAgICAgICAgICAgbWFyZ2luLWJvdHRvbTogOHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogYmxvY2s7CiAgICAgICAgICAgICAgICBjb2xvcjogIzQ0NDsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMTRweDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtc2VsZWN0LAogICAgICAgICAgICAubXN0Yy1pbnB1dCB7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgICAgICBib3JkZXI6IDJweCBzb2xpZCAjZWNmMGYxOwogICAgICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogOHB4OwogICAgICAgICAgICAgICAgZm9udC1zaXplOiAxNnB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1idG4gewogICAgICAgICAgICAgICAgYmFja2dyb3VuZDogIzliNTliNjsKICAgICAgICAgICAgICAgIGNvbG9yOiB3aGl0ZTsKICAgICAgICAgICAgICAgIGJvcmRlcjogbm9uZTsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDhweDsKICAgICAgICAgICAgICAgIGN1cnNvcjogcG9pbnRlcjsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMTZweDsKICAgICAgICAgICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1idG46aG92ZXIgewogICAgICAgICAgICAgICAgYmFja2dyb3VuZDogIzhlNDRhZDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtcmVzdWx0cyB7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZmJmNmZkOwogICAgICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2ViZGVmMDsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDhweDsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDE1cHg7CiAgICAgICAgICAgICAgICBtYXJnaW4tdG9wOiAyMHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogbm9uZTsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtdml6LWJveCB7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZmZmOwogICAgICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2YwZjBmMDsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDEycHg7CiAgICAgICAgICAgICAgICBwYWRkaW5nOiAyMHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgICAgIGp1c3RpZnktY29udGVudDogY2VudGVyOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy12aXotYm94IHN2ZyB7CiAgICAgICAgICAgICAgICBtYXgtd2lkdGg6IDEwMCU7CiAgICAgICAgICAgICAgICBoZWlnaHQ6IGF1dG87CiAgICAgICAgICAgICAgICBtYXgtaGVpZ2h0OiAyNTBweDsKICAgICAgICAgICAgfQogICAgICAgIDwvc3R5bGU+CgogICAgICAgIDxkaXYgY2xhc3M9Im1zdGMtaGVhZGVyIj4KICAgICAgICAgICAgPGgyPk1pc3NpbmcgU2lkZSBvZiBUcmlhbmdsZSBDYWxjdWxhdG9yPC9oMj4KICAgICAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1zdWJ0aXRsZSI+TGF3IG9mIFNpbmVzICYgQ29zaW5lcyBTb2x2ZXI8L2Rpdj4KICAgICAgICA8L2Rpdj4KCiAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1ncmlkIj4KICAgICAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1jb250cm9scyI+CiAgICAgICAgICAgICAgICA8ZGl2PgogICAgICAgICAgICAgICAgICAgIDxsYWJlbCBjbGFzcz0ibXN0Yy1sYWJlbCI+S25vd24gVmFsdWVzOjwvbGFiZWw+CiAgICAgICAgICAgICAgICAgICAgPHNlbGVjdCBpZD0ibXN0Yy1tb2RlIiBjbGFzcz0ibXN0Yy1zZWxlY3QiIG9uY2hhbmdlPSJtc3RjUmVzZXQoKSI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxvcHRpb24gdmFsdWU9InNhcyI+MiBTaWRlcyAmIEluY2x1ZGVkIEFuZ2xlIChTQVMpPC9vcHRpb24+CiAgICAgICAgICAgICAgICAgICAgICAgIDxvcHRpb24gdmFsdWU9ImFhcyI+MiBBbmdsZXMgJiBTaWRlIChBQVMvQVNBKTwvb3B0aW9uPgogICAgICAgICAgICAgICAgICAgICAgICA8b3B0aW9uIHZhbHVlPSJyaWdodCI+UmlnaHQgVHJpYW5nbGUgKDIgU2lkZXMpPC9vcHRpb24+CiAgICAgICAgICAgICAgICAgICAgPC9zZWxlY3Q+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJpbnAtYm94Ij4KICAgICAgICAgICAgICAgICAgICA8IS0tIER5bmFtaWMgLS0+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8YnV0dG9uIGNsYXNzPSJtc3RjLWJ0biIgb25jbGljaz0ibXN0Y0NhbGMoKSI+RmluZCBNaXNzaW5nIFNpZGU8L2J1dHRvbj4KCiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJtc3RjLXJlcyIgY2xhc3M9Im1zdGMtcmVzdWx0cyI+CiAgICAgICAgICAgICAgICAgICAgPHA+PGI+TWlzc2luZyBTaWRlICh4KTogPC9iPiA8c3BhbiBpZD0icmVzLXZhbCIgc3R5bGU9ImNvbG9yOiM4ZTQ0YWQ7IGZvbnQtc2l6ZToxOHB4OyI+LTwvc3Bhbj48L3A+CiAgICAgICAgICAgICAgICAgICAgPGRpdiBpZD0ibXN0Yy1zdGVwcyIKICAgICAgICAgICAgICAgICAgICAgICAgc3R5bGU9ImZvbnQtc2l6ZToxM3B4OyBjb2xvcjojNTU1OyBib3JkZXItdG9wOjFweCBzb2xpZCAjZWVlOyBwYWRkaW5nLXRvcDoxMHB4OyI+PC9kaXY+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgPC9kaXY+CgogICAgICAgICAgICA8ZGl2IGNsYXNzPSJtc3RjLXZpei1ib3giPgogICAgICAgICAgICAgICAgPHN2ZyBpZD0ibXN0Yy1zdmciIHZpZXdCb3g9IjAgMCAxMDAgMTAwIj4KICAgICAgICAgICAgICAgICAgICA8dGV4dCB4PSI1MCIgeT0iNTAiIHRleHQtYW5jaG9yPSJtaWRkbGUiIGZpbGw9IiNjY2MiPlZpc3VhbGl6YXRpb248L3RleHQ+CiAgICAgICAgICAgICAgICA8L3N2Zz4KICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgPC9kaXY+CgogICAgICAgIDxzY3JpcHQ+CiAgICAgICAgICAgIGZ1bmN0aW9uIG1zdGNSZXNldCgpIHsKICAgICAgICAgICAgICAgIGNvbnN0IG1vZGUgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbXN0Yy1tb2RlJykudmFsdWU7CiAgICAgICAgICAgICAgICBjb25zdCBib3ggPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnaW5wLWJveCcpOwogICAgICAgICAgICAgICAgaWYgKG1vZGUgPT09ICdzYXMnKSB7CiAgICAgICAgICAgICAgICAgICAgYm94LmlubmVySFRNTCA9IGA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiPlNpZGUgYTwvbGFiZWw+PGlucHV0IHR5cGU9Im51bWJlciIgaWQ9InYxIiBjbGFzcz0ibXN0Yy1pbnB1dCIgcGxhY2Vob2xkZXI9ImUuZy4gNSI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5TaWRlIGI8L2xhYmVsPjxpbnB1dCB0eXBlPSJudW1iZXIiIGlkPSJ2MiIgY2xhc3M9Im1zdGMtaW5wdXQiIHBsYWNlaG9sZGVyPSJlLmcuIDciPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxsYWJlbCBjbGFzcz0ibXN0Yy1sYWJlbCIgc3R5bGU9Im1hcmdpbi10b3A6MTBweCI+SW5jbHVkZWQgQW5nbGUgKGRlZyk8L2xhYmVsPjxpbnB1dCB0eXBlPSJudW1iZXIiIGlkPSJ2MyIgY2xhc3M9Im1zdGMtaW5wdXQiIHBsYWNlaG9sZGVyPSJlLmcuIDQ1Ij5gOwogICAgICAgICAgICAgICAgfSBlbHNlIGlmIChtb2RlID09PSAnYWFzJykgewogICAgICAgICAgICAgICAgICAgIGJveC5pbm5lckhUTUwgPSBgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIj5BbmdsZSBBIChkZWcpPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjEiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA2MCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5BbmdsZSBCIChkZWcpPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjIiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA2MCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5TaWRlIGEgKG9wcCB0byBBKTwvbGFiZWw+PGlucHV0IHR5cGU9Im51bWJlciIgaWQ9InYzIiBjbGFzcz0ibXN0Yy1pbnB1dCIgcGxhY2Vob2xkZXI9ImUuZy4gNSI+YDsKICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgYm94LmlubmVySFRNTCA9IGA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiPkxlZyBhPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjEiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiAzIj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiIHN0eWxlPSJtYXJnaW4tdG9wOjEwcHgiPkxlZyBiPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjIiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA0Ij5gOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtcmVzJykuc3R5bGUuZGlzcGxheSA9ICdub25lJzsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgZnVuY3Rpb24gbXN0Y0NhbGMoKSB7CiAgICAgICAgICAgICAgICBjb25zdCBtb2RlID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtbW9kZScpLnZhbHVlOwogICAgICAgICAgICAgICAgbGV0IHJlcyA9IDA7IGxldCBzdGVwcyA9ICIiOwogICAgICAgICAgICAgICAgbGV0IHB0cyA9IFtdOwoKICAgICAgICAgICAgICAgIHRyeSB7CiAgICAgICAgICAgICAgICAgICAgY29uc3QgdjEgPSBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd2MScpLnZhbHVlKTsKICAgICAgICAgICAgICAgICAgICBjb25zdCB2MiA9IHBhcnNlRmxvYXQoZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3YyJykudmFsdWUpOwogICAgICAgICAgICAgICAgICAgIGNvbnN0IHYzID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3YzJykgPyBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd2MycpLnZhbHVlKSA6IDA7CgogICAgICAgICAgICAgICAgICAgIGlmICghdjEgfHwgIXYyKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIGlmIChtb2RlID09PSAnc2FzJykgewogICAgICAgICAgICAgICAgICAgICAgICAvLyBMYXcgb2YgQ29zaW5lczogYyA9IHNxcnQoYV4yK2JeMiAtIDJhYiBjb3MoQykpCiAgICAgICAgICAgICAgICAgICAgICAgIGlmICghdjMpIHJldHVybjsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgcmFkID0gdjMgKiBNYXRoLlBJIC8gMTgwOwogICAgICAgICAgICAgICAgICAgICAgICByZXMgPSBNYXRoLnNxcnQodjEgKiB2MSArIHYyICogdjIgLSAyICogdjEgKiB2MiAqIE1hdGguY29zKHJhZCkpOwogICAgICAgICAgICAgICAgICAgICAgICBzdGVwcyA9IGBVc2luZyBMYXcgb2YgQ29zaW5lczo8YnI+eMKyID0gYcKyICsgYsKyIC0gMmFiIGNvcyjOuCk8YnI+eCA9ICR7cmVzLnRvRml4ZWQoNCl9YDsKICAgICAgICAgICAgICAgICAgICAgICAgcHRzID0gW3sgeDogMCwgeTogMCB9LCB7IHg6IHYxLCB5OiAwIH0sIHsgeDogdjIgKiBNYXRoLmNvcyhyYWQpLCB5OiB2MiAqIE1hdGguc2luKHJhZCkgfV07CiAgICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgICAgIGVsc2UgaWYgKG1vZGUgPT09ICdhYXMnKSB7CiAgICAgICAgICAgICAgICAgICAgICAgIC8vIEFuZ2xlIEE9djEsIEFuZ2xlIEI9djIsIFNpZGUgYT12My4gRmluZCBTaWRlIGI/IFR5cGljYWxseSB1c2VycyB3YW50IG1pc3Npbmcgc2lkZXMuCiAgICAgICAgICAgICAgICAgICAgICAgIC8vIGIgLyBzaW5CID0gYSAvIHNpbkEgPT4gYiA9IGEgKiBzaW5CIC8gc2luQQogICAgICAgICAgICAgICAgICAgICAgICAvLyBUaGlzIHRvb2wgYXNzdW1lcyBmaW5kaW5nIFNpZGUgYiAob3Bwb3NpdGUgQW5nbGUgQikuCiAgICAgICAgICAgICAgICAgICAgICAgIGlmICghdjMpIHJldHVybjsKICAgICAgICAgICAgICAgICAgICAgICAgaWYgKHYxICsgdjIgPj0gMTgwKSB7IGFsZXJ0KCJTdW0gb2YgYW5nbGVzIG11c3QgYmUgPCAxODAiKTsgcmV0dXJuOyB9CiAgICAgICAgICAgICAgICAgICAgICAgIGNvbnN0IHJhZEEgPSB2MSAqIE1hdGguUEkgLyAxODA7CiAgICAgICAgICAgICAgICAgICAgICAgIGNvbnN0IHJhZEIgPSB2MiAqIE1hdGguUEkgLyAxODA7CiAgICAgICAgICAgICAgICAgICAgICAgIHJlcyA9IHYzICogTWF0aC5zaW4ocmFkQikgLyBNYXRoLnNpbihyYWRBKTsKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcHMgPSBgVXNpbmcgTGF3IG9mIFNpbmVzOjxicj5iIC8gc2luKEIpID0gYSAvIHNpbihBKTxicj5iID0gYSDDlyBzaW4oQikgLyBzaW4oQSk8YnI+YiA9ICR7cmVzLnRvRml4ZWQoNCl9YDsKICAgICAgICAgICAgICAgICAgICAgICAgLy8gQUFTIERyYXcgKGFwcHJveCkKICAgICAgICAgICAgICAgICAgICAgICAgLy8gQSBhdCBPcmlnaW4gY3JlYXRlcyBhbmdsZS4KICAgICAgICAgICAgICAgICAgICAgICAgLy8gTmVlZCBjb29yZGluYXRlcy4gQiBpcyBhdCAoYywgMCkuIEMgaXMgKHgseSkuCiAgICAgICAgICAgICAgICAgICAgICAgIC8vIFdlIG5lZWQgc2lkZSBjLi4uIGMgLyBzaW5DID0gYSAvIHNpbkEuIEMgPSAxODAtQS1CLgogICAgICAgICAgICAgICAgICAgICAgICBjb25zdCByYWRDID0gKDE4MCAtIHYxIC0gdjIpICogTWF0aC5QSSAvIDE4MDsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgYyA9IHYzICogTWF0aC5zaW4ocmFkQykgLyBNYXRoLnNpbihyYWRBKTsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgYSA9IHYzOwogICAgICAgICAgICAgICAgICAgICAgICBjb25zdCBiID0gcmVzOwogICAgICAgICAgICAgICAgICAgICAgICAvLyBBPSgwLDApLCBCPShjLDApLiBDPwogICAgICAgICAgICAgICAgICAgICAgICAvLyBDIHggPSBiIGNvc0EsIHkgPSBiIHNpbkEKICAgICAgICAgICAgICAgICAgICAgICAgcHRzID0gW3sgeDogMCwgeTogMCB9LCB7IHg6IGMsIHk6IDAgfSwgeyB4OiBiICogTWF0aC5jb3MocmFkQSksIHk6IGIgKiBNYXRoLnNpbihyYWRBKSB9XTsKICAgICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICAgICAgZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgICAgIC8vIFB5dGhhZzogYyA9IHNxcnQoYV4yK2JeMikKICAgICAgICAgICAgICAgICAgICAgICAgcmVzID0gTWF0aC5zcXJ0KHYxICogdjEgKyB2MiAqIHYyKTsKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcHMgPSBgeCA9IOKImihhwrIgKyBiwrIpID0gJHtyZXMudG9GaXhlZCg0KX1gOwogICAgICAgICAgICAgICAgICAgICAgICBwdHMgPSBbeyB4OiAwLCB5OiAwIH0sIHsgeDogdjEsIHk6IDAgfSwgeyB4OiAwLCB5OiB2MiB9XTsKICAgICAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgICAgIGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdyZXMtdmFsJykuaW5uZXJUZXh0ID0gcmVzLnRvRml4ZWQoNCk7CiAgICAgICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtc3RlcHMnKS5pbm5lckhUTUwgPSBzdGVwczsKICAgICAgICAgICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbXN0Yy1yZXMnKS5zdHlsZS5kaXNwbGF5ID0gJ2Jsb2NrJzsKICAgICAgICAgICAgICAgICAgICBtc3RjRHJhdyhwdHMpOwoKICAgICAgICAgICAgICAgIH0gY2F0Y2ggKGUpIHsgfQogICAgICAgICAgICB9CgogICAgICAgICAgICBmdW5jdGlvbiBtc3RjRHJhdyhwdHMpIHsKICAgICAgICAgICAgICAgIGNvbnN0IHN2ZyA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdtc3RjLXN2ZycpOwogICAgICAgICAgICAgICAgY29uc3QgeHMgPSBwdHMubWFwKHAgPT4gcC54KSwgeXMgPSBwdHMubWFwKHAgPT4gcC55KTsKICAgICAgICAgICAgICAgIGNvbnN0IG14ID0gTWF0aC5taW4oLi4ueHMpLCBNeCA9IE1hdGgubWF4KC4uLnhzKSwgbXkgPSBNYXRoLm1pbiguLi55cyksIE15ID0gTWF0aC5tYXgoLi4ueXMpOwogICAgICAgICAgICAgICAgY29uc3QgdyA9IE14IC0gbXgsIGggPSBNeSAtIG15OwogICAgICAgICAgICAgICAgY29uc3QgcGFkID0gTWF0aC5tYXgodywgaCkgKiAwLjI7CiAgICAgICAgICAgICAgICBjb25zdCBkID0gYE0gJHtwdHNbMF0ueH0gJHtwdHNbMF0ueX0gTCAke3B0c1sxXS54fSAke3B0c1sxXS55fSBMICR7cHRzWzJdLnh9ICR7cHRzWzJdLnl9IFpgOwoKICAgICAgICAgICAgICAgIC8vIEZsaXAgWSBpbXBsaWNpdGx5IG9yIGFzc3VtZSBjb29yZHMKICAgICAgICAgICAgICAgIHN2Zy5pbm5lckhUTUwgPSBgPHBhdGggZD0iJHtkfSIgZmlsbD0iI2Y0ZWNmNyIgc3Ryb2tlPSIjOGU0NGFkIiBzdHJva2Utd2lkdGg9IiR7TWF0aC5tYXgodywgaCkgLyA0MH0iIC8+YDsKICAgICAgICAgICAgICAgIHN2Zy5zZXRBdHRyaWJ1dGUoJ3ZpZXdCb3gnLCBgJHtteCAtIHBhZH0gJHtteSAtIHBhZH0gJHt3ICsgMiAqIHBhZH0gJHtoICsgMiAqIHBhZH1gKTsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgbXN0Y1Jlc2V0KCk7CiAgICAgICAgPC9zY3JpcHQ+CiAgICA8L2Rpdj4KICAgIDwhLS0gTWlzc2luZyBTaWRlIG9mIFRyaWFuZ2xlIENhbGN1bGF0b3IgRW5kIC0tPgoKPC9ib2R5PgoKPC9odG1sPg==”; var htmlContent = “”; try { htmlContent = atob(b64); } catch (e) { console.error(“Base64 decode failed”, e); wrapper.innerHTML = ” Error loading calculator. “; return; } // Create Iframe var iframe = document.createElement(‘iframe’); iframe.style.width = “100%”; iframe.style.border = “none”; iframe.style.overflow = “hidden”; iframe.scrolling = “no”; iframe.style.minHeight = “400px”;…

  • Orthocenter of Triangle Calculator – Find Triangle Altitude Intersection Point

    Orthocenter of Triangle Calculator Find the orthocenter (intersection of altitudes) of a triangle. Solve By Vertex Coordinates (A, B, C)Sides + One Vertex Coordinates A (x₁, y₁) B (x₂, y₂) C (x₃, y₃) Given three side lengths and one known vertex, compute third coordinates via geometry then orthocenter. Side a (BC) Side b (AC) Side…

  • Exterior Angle of Triangle Calculator – Find Exterior Angle Fast

    Exterior Angle of Triangle Calculator Compute one or more exterior angles of a triangle from interior angles. Solve By Single Interior → ExteriorThree Interiors → All ExteriorsTwo Interiors → Third + All ExteriorsVerify Triangle Angles Interior Angle (°) Calculate the exterior at that vertex. Angle A (°) Angle B (°) Angle C (°) All three…