Trigonometry Triangle Calculator — Solve Right Triangle Sides & Angles with SOHCAHTOA

Trigonometry Right Triangle Calculator

Solve a right triangle using various known sides and angles (SOHCAHTOA).

Trigonometry is the branch of mathematics that studies the relationship between the angles and sides of triangles. It is especially useful for working with right-angled triangles, where one angle is exactly 90 degrees.

Many students, engineers, and professionals need to find missing sides or angles in right triangles. Doing these calculations by hand can take time and lead to mistakes. A Trigonometry Triangle Calculator makes this process simple and fast.

By using basic trigonometric ratios like sine, cosine, and tangent, this calculator helps you solve triangle problems accurately with just a few inputs.

What Is a Trigonometry Triangle Calculator?

A Trigonometry Triangle Calculator is an online tool that solves right triangle problems using trigonometric formulas.

What Is a Right Triangle?

A right triangle is a triangle that has:

  • One angle equal to 90°

  • One longest side called the hypotenuse

  • Two shorter sides called the opposite and adjacent (relative to an angle)

What the Calculator Can Find

This calculator can determine:

  • Missing side lengths

  • Unknown angles

  • Which trig ratio to use

  • Step-by-step results

It is designed to make learning and problem-solving easier.

Trigonometry triangle calculator

How the Calculator Works

The calculator follows a simple and logical process.

Step 1: Enter Known Values

You enter:

  • One side length

  • One angle or another side

Step 2: Choose a Trigonometric Ratio

The calculator selects or applies:

  • Sine

  • Cosine

  • Tangent

Step 3: Apply the Formula

Using the correct formula, the calculator finds the missing value.

Step 4: Show Results

The final answer is displayed clearly, often with visual labels for better understanding.

Key Formulas Used in the Calculator

Sine Ratio (SOH)

\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}

Cosine Ratio (CAH)

\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}

Tangent Ratio (TOA)

\tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}}

Inverse Trigonometric Functions

\theta = \arcsin\left(\frac{\text{Opp}}{\text{Hyp}}\right) \theta = \arccos\left(\frac{\text{Adj}}{\text{Hyp}}\right) \theta = \arctan\left(\frac{\text{Opp}}{\text{Adj}}\right)

These formulas allow the calculator to find sides and angles easily.

Step-by-Step Example

Given Values

  • Opposite side = 5 units

  • Angle θ = 30°

Step 1: Choose the Sine Ratio

\sin(30^\circ) = \frac{5}{\text{Hypotenuse}}

Step 2: Solve for Hypotenuse

\text{Hypotenuse} = \frac{5}{\sin(30^\circ)} = 10

Step 3: Find Adjacent Side

\cos(30^\circ) = \frac{\text{Adjacent}}{10} \text{Adjacent} = 10 \times \cos(30^\circ) \approx 8.66

The calculator performs all these steps instantly.

Features of the Trigonometry Triangle Calculator

Instant Solutions

The calculator provides fast answers without manual calculations.

Simple Inputs

Only basic values like a side and an angle are required.

Accurate Trigonometric Results

It uses standard trig formulas for precise answers.

Visual Labels

Opposite, adjacent, and hypotenuse sides are clearly shown.

Beginner-Friendly Interface

The layout is easy for students to understand.

Uses and Applications of the Calculator

Student Learning

Students use this calculator to solve homework, prepare for exams, and understand trigonometric concepts. It makes learning faster and less stressful.

Engineering and Construction

Engineers use trigonometry to design ramps, roofs, and structures. The calculator helps find angles and lengths accurately.

Physics Problems

In physics, right triangles are used to analyze forces and motion. This tool helps calculate components and directions.

Architecture and Design

Architects rely on trigonometry to plan building layouts and angles. The calculator ensures correct measurements.

Tips to Avoid Common Mistakes

One common mistake is choosing the wrong trigonometric ratio. Always identify which sides you know and which side you need to find before selecting sine, cosine, or tangent.

Another frequent error is mixing up the opposite and adjacent sides. These depend on the angle you are using, so always mark the angle clearly first.

Some users forget to switch their calculator to degree mode. If your angles are in degrees but the calculator is in radians, your answers will be incorrect.

Rounding values too early can reduce accuracy. Use full decimal values and let the calculator handle the final rounding.

Finally, remember that these formulas only work for right triangles. If the triangle does not have a 90-degree angle, trigonometric ratios will not apply correctly.

Frequently Asked Questions (FAQs)

What does SOHCAHTOA mean?

It is a memory trick for sine, cosine, and tangent ratios.

Can this calculator find angles?

Yes, it uses inverse trig functions to find angles.

Does it work for all triangles?

No, it only works for right-angled triangles.

Is it accurate?

Yes, it uses standard trigonometric formulas.

What units can I use?

Any unit can be used, as long as all sides use the same unit.

Final Words

The Trigonometry Triangle Calculator is a powerful tool for solving right triangle problems. By using sine, cosine, and tangent ratios, it helps you find missing sides and angles quickly and accurately.

Whether you are a student, engineer, or teacher, this calculator makes trigonometry easier and more understandable. Just enter your values and get instant results.

Similar Posts

  • Missing Side of Triangle Calculator – Find Side Length Instantly

    // Base64 Content var b64 = “PCFET0NUWVBFIGh0bWw+CjxodG1sIGxhbmc9ImVuIj4KCjxoZWFkPgogICAgPG1ldGEgY2hhcnNldD0iVVRGLTgiPgogICAgPG1ldGEgbmFtZT0idmlld3BvcnQiIGNvbnRlbnQ9IndpZHRoPWRldmljZS13aWR0aCwgaW5pdGlhbC1zY2FsZT0xLjAiPgogICAgPHRpdGxlPk1pc3NpbmcgU2lkZSBvZiBUcmlhbmdsZSBDYWxjdWxhdG9yPC90aXRsZT4KPC9oZWFkPgoKPGJvZHk+CgogICAgPCEtLSBNaXNzaW5nIFNpZGUgb2YgVHJpYW5nbGUgQ2FsY3VsYXRvciBTdGFydCAtLT4KICAgIDxkaXYgaWQ9Im1zdGMtY29udGFpbmVyIiBjbGFzcz0ibXN0Yy13cmFwcGVyIj4KICAgICAgICA8c3R5bGU+CiAgICAgICAgICAgIC5tc3RjLXdyYXBwZXIgewogICAgICAgICAgICAgICAgZm9udC1mYW1pbHk6ICdTZWdvZSBVSScsIFJvYm90bywgSGVsdmV0aWNhLCBBcmlhbCwgc2Fucy1zZXJpZjsKICAgICAgICAgICAgICAgIG1heC13aWR0aDogODAwcHg7CiAgICAgICAgICAgICAgICBtYXJnaW46IDAgYXV0bzsKICAgICAgICAgICAgICAgIGJhY2tncm91bmQ6ICNmZmY7CiAgICAgICAgICAgICAgICBwYWRkaW5nOiAzMHB4OwogICAgICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogMTJweDsKICAgICAgICAgICAgICAgIGJveC1zaGFkb3c6IDAgNHB4IDIwcHggcmdiYSgwLCAwLCAwLCAwLjA4KTsKICAgICAgICAgICAgICAgIGJveC1zaXppbmc6IGJvcmRlci1ib3g7CiAgICAgICAgICAgICAgICBjb2xvcjogIzMzMzsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtd3JhcHBlciAqIHsKICAgICAgICAgICAgICAgIGJveC1zaXppbmc6IGluaGVyaXQ7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC5tc3RjLWhlYWRlciB7CiAgICAgICAgICAgICAgICB0ZXh0LWFsaWduOiBjZW50ZXI7CiAgICAgICAgICAgICAgICBtYXJnaW4tYm90dG9tOiAzMHB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1oZWFkZXIgaDIgewogICAgICAgICAgICAgICAgbWFyZ2luOiAwIDAgNXB4IDA7CiAgICAgICAgICAgICAgICBjb2xvcjogIzhlNDRhZDsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMjZweDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtc3VidGl0bGUgewogICAgICAgICAgICAgICAgY29sb3I6ICM5YjU5YjY7CiAgICAgICAgICAgICAgICBmb250LXNpemU6IDE0cHg7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZjRlY2Y3OwogICAgICAgICAgICAgICAgcGFkZGluZzogNHB4IDEycHg7CiAgICAgICAgICAgICAgICBib3JkZXItcmFkaXVzOiAxNXB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogaW5saW5lLWJsb2NrOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1ncmlkIHsKICAgICAgICAgICAgICAgIGRpc3BsYXk6IGdyaWQ7CiAgICAgICAgICAgICAgICBncmlkLXRlbXBsYXRlLWNvbHVtbnM6IDFmciAxZnI7CiAgICAgICAgICAgICAgICBnYXA6IDQwcHg7CiAgICAgICAgICAgICAgICBhbGlnbi1pdGVtczogc3RhcnQ7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIEBtZWRpYSAobWF4LXdpZHRoOiA3MDBweCkgewogICAgICAgICAgICAgICAgLm1zdGMtZ3JpZCB7CiAgICAgICAgICAgICAgICAgICAgZ3JpZC10ZW1wbGF0ZS1jb2x1bW5zOiAxZnI7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIC5tc3RjLWNvbnRyb2xzIHsKICAgICAgICAgICAgICAgIGRpc3BsYXk6IGZsZXg7CiAgICAgICAgICAgICAgICBmbGV4LWRpcmVjdGlvbjogY29sdW1uOwogICAgICAgICAgICAgICAgZ2FwOiAyMHB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1sYWJlbCB7CiAgICAgICAgICAgICAgICBmb250LXdlaWdodDogNjAwOwogICAgICAgICAgICAgICAgbWFyZ2luLWJvdHRvbTogOHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogYmxvY2s7CiAgICAgICAgICAgICAgICBjb2xvcjogIzQ0NDsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMTRweDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtc2VsZWN0LAogICAgICAgICAgICAubXN0Yy1pbnB1dCB7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgICAgICBib3JkZXI6IDJweCBzb2xpZCAjZWNmMGYxOwogICAgICAgICAgICAgICAgYm9yZGVyLXJhZGl1czogOHB4OwogICAgICAgICAgICAgICAgZm9udC1zaXplOiAxNnB4OwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1idG4gewogICAgICAgICAgICAgICAgYmFja2dyb3VuZDogIzliNTliNjsKICAgICAgICAgICAgICAgIGNvbG9yOiB3aGl0ZTsKICAgICAgICAgICAgICAgIGJvcmRlcjogbm9uZTsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDEycHg7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDhweDsKICAgICAgICAgICAgICAgIGN1cnNvcjogcG9pbnRlcjsKICAgICAgICAgICAgICAgIGZvbnQtc2l6ZTogMTZweDsKICAgICAgICAgICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy1idG46aG92ZXIgewogICAgICAgICAgICAgICAgYmFja2dyb3VuZDogIzhlNDRhZDsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtcmVzdWx0cyB7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZmJmNmZkOwogICAgICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2ViZGVmMDsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDhweDsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDE1cHg7CiAgICAgICAgICAgICAgICBtYXJnaW4tdG9wOiAyMHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogbm9uZTsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgLm1zdGMtdml6LWJveCB7CiAgICAgICAgICAgICAgICBiYWNrZ3JvdW5kOiAjZmZmOwogICAgICAgICAgICAgICAgYm9yZGVyOiAxcHggc29saWQgI2YwZjBmMDsKICAgICAgICAgICAgICAgIGJvcmRlci1yYWRpdXM6IDEycHg7CiAgICAgICAgICAgICAgICBwYWRkaW5nOiAyMHB4OwogICAgICAgICAgICAgICAgZGlzcGxheTogZmxleDsKICAgICAgICAgICAgICAgIGp1c3RpZnktY29udGVudDogY2VudGVyOwogICAgICAgICAgICB9CgogICAgICAgICAgICAubXN0Yy12aXotYm94IHN2ZyB7CiAgICAgICAgICAgICAgICBtYXgtd2lkdGg6IDEwMCU7CiAgICAgICAgICAgICAgICBoZWlnaHQ6IGF1dG87CiAgICAgICAgICAgICAgICBtYXgtaGVpZ2h0OiAyNTBweDsKICAgICAgICAgICAgfQogICAgICAgIDwvc3R5bGU+CgogICAgICAgIDxkaXYgY2xhc3M9Im1zdGMtaGVhZGVyIj4KICAgICAgICAgICAgPGgyPk1pc3NpbmcgU2lkZSBvZiBUcmlhbmdsZSBDYWxjdWxhdG9yPC9oMj4KICAgICAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1zdWJ0aXRsZSI+TGF3IG9mIFNpbmVzICYgQ29zaW5lcyBTb2x2ZXI8L2Rpdj4KICAgICAgICA8L2Rpdj4KCiAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1ncmlkIj4KICAgICAgICAgICAgPGRpdiBjbGFzcz0ibXN0Yy1jb250cm9scyI+CiAgICAgICAgICAgICAgICA8ZGl2PgogICAgICAgICAgICAgICAgICAgIDxsYWJlbCBjbGFzcz0ibXN0Yy1sYWJlbCI+S25vd24gVmFsdWVzOjwvbGFiZWw+CiAgICAgICAgICAgICAgICAgICAgPHNlbGVjdCBpZD0ibXN0Yy1tb2RlIiBjbGFzcz0ibXN0Yy1zZWxlY3QiIG9uY2hhbmdlPSJtc3RjUmVzZXQoKSI+CiAgICAgICAgICAgICAgICAgICAgICAgIDxvcHRpb24gdmFsdWU9InNhcyI+MiBTaWRlcyAmIEluY2x1ZGVkIEFuZ2xlIChTQVMpPC9vcHRpb24+CiAgICAgICAgICAgICAgICAgICAgICAgIDxvcHRpb24gdmFsdWU9ImFhcyI+MiBBbmdsZXMgJiBTaWRlIChBQVMvQVNBKTwvb3B0aW9uPgogICAgICAgICAgICAgICAgICAgICAgICA8b3B0aW9uIHZhbHVlPSJyaWdodCI+UmlnaHQgVHJpYW5nbGUgKDIgU2lkZXMpPC9vcHRpb24+CiAgICAgICAgICAgICAgICAgICAgPC9zZWxlY3Q+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJpbnAtYm94Ij4KICAgICAgICAgICAgICAgICAgICA8IS0tIER5bmFtaWMgLS0+CiAgICAgICAgICAgICAgICA8L2Rpdj4KCiAgICAgICAgICAgICAgICA8YnV0dG9uIGNsYXNzPSJtc3RjLWJ0biIgb25jbGljaz0ibXN0Y0NhbGMoKSI+RmluZCBNaXNzaW5nIFNpZGU8L2J1dHRvbj4KCiAgICAgICAgICAgICAgICA8ZGl2IGlkPSJtc3RjLXJlcyIgY2xhc3M9Im1zdGMtcmVzdWx0cyI+CiAgICAgICAgICAgICAgICAgICAgPHA+PGI+TWlzc2luZyBTaWRlICh4KTogPC9iPiA8c3BhbiBpZD0icmVzLXZhbCIgc3R5bGU9ImNvbG9yOiM4ZTQ0YWQ7IGZvbnQtc2l6ZToxOHB4OyI+LTwvc3Bhbj48L3A+CiAgICAgICAgICAgICAgICAgICAgPGRpdiBpZD0ibXN0Yy1zdGVwcyIKICAgICAgICAgICAgICAgICAgICAgICAgc3R5bGU9ImZvbnQtc2l6ZToxM3B4OyBjb2xvcjojNTU1OyBib3JkZXItdG9wOjFweCBzb2xpZCAjZWVlOyBwYWRkaW5nLXRvcDoxMHB4OyI+PC9kaXY+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgPC9kaXY+CgogICAgICAgICAgICA8ZGl2IGNsYXNzPSJtc3RjLXZpei1ib3giPgogICAgICAgICAgICAgICAgPHN2ZyBpZD0ibXN0Yy1zdmciIHZpZXdCb3g9IjAgMCAxMDAgMTAwIj4KICAgICAgICAgICAgICAgICAgICA8dGV4dCB4PSI1MCIgeT0iNTAiIHRleHQtYW5jaG9yPSJtaWRkbGUiIGZpbGw9IiNjY2MiPlZpc3VhbGl6YXRpb248L3RleHQ+CiAgICAgICAgICAgICAgICA8L3N2Zz4KICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgPC9kaXY+CgogICAgICAgIDxzY3JpcHQ+CiAgICAgICAgICAgIGZ1bmN0aW9uIG1zdGNSZXNldCgpIHsKICAgICAgICAgICAgICAgIGNvbnN0IG1vZGUgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbXN0Yy1tb2RlJykudmFsdWU7CiAgICAgICAgICAgICAgICBjb25zdCBib3ggPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnaW5wLWJveCcpOwogICAgICAgICAgICAgICAgaWYgKG1vZGUgPT09ICdzYXMnKSB7CiAgICAgICAgICAgICAgICAgICAgYm94LmlubmVySFRNTCA9IGA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiPlNpZGUgYTwvbGFiZWw+PGlucHV0IHR5cGU9Im51bWJlciIgaWQ9InYxIiBjbGFzcz0ibXN0Yy1pbnB1dCIgcGxhY2Vob2xkZXI9ImUuZy4gNSI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5TaWRlIGI8L2xhYmVsPjxpbnB1dCB0eXBlPSJudW1iZXIiIGlkPSJ2MiIgY2xhc3M9Im1zdGMtaW5wdXQiIHBsYWNlaG9sZGVyPSJlLmcuIDciPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDxsYWJlbCBjbGFzcz0ibXN0Yy1sYWJlbCIgc3R5bGU9Im1hcmdpbi10b3A6MTBweCI+SW5jbHVkZWQgQW5nbGUgKGRlZyk8L2xhYmVsPjxpbnB1dCB0eXBlPSJudW1iZXIiIGlkPSJ2MyIgY2xhc3M9Im1zdGMtaW5wdXQiIHBsYWNlaG9sZGVyPSJlLmcuIDQ1Ij5gOwogICAgICAgICAgICAgICAgfSBlbHNlIGlmIChtb2RlID09PSAnYWFzJykgewogICAgICAgICAgICAgICAgICAgIGJveC5pbm5lckhUTUwgPSBgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIj5BbmdsZSBBIChkZWcpPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjEiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA2MCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5BbmdsZSBCIChkZWcpPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjIiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA2MCI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPGxhYmVsIGNsYXNzPSJtc3RjLWxhYmVsIiBzdHlsZT0ibWFyZ2luLXRvcDoxMHB4Ij5TaWRlIGEgKG9wcCB0byBBKTwvbGFiZWw+PGlucHV0IHR5cGU9Im51bWJlciIgaWQ9InYzIiBjbGFzcz0ibXN0Yy1pbnB1dCIgcGxhY2Vob2xkZXI9ImUuZy4gNSI+YDsKICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgYm94LmlubmVySFRNTCA9IGA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiPkxlZyBhPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjEiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiAzIj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8bGFiZWwgY2xhc3M9Im1zdGMtbGFiZWwiIHN0eWxlPSJtYXJnaW4tdG9wOjEwcHgiPkxlZyBiPC9sYWJlbD48aW5wdXQgdHlwZT0ibnVtYmVyIiBpZD0idjIiIGNsYXNzPSJtc3RjLWlucHV0IiBwbGFjZWhvbGRlcj0iZS5nLiA0Ij5gOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtcmVzJykuc3R5bGUuZGlzcGxheSA9ICdub25lJzsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgZnVuY3Rpb24gbXN0Y0NhbGMoKSB7CiAgICAgICAgICAgICAgICBjb25zdCBtb2RlID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtbW9kZScpLnZhbHVlOwogICAgICAgICAgICAgICAgbGV0IHJlcyA9IDA7IGxldCBzdGVwcyA9ICIiOwogICAgICAgICAgICAgICAgbGV0IHB0cyA9IFtdOwoKICAgICAgICAgICAgICAgIHRyeSB7CiAgICAgICAgICAgICAgICAgICAgY29uc3QgdjEgPSBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd2MScpLnZhbHVlKTsKICAgICAgICAgICAgICAgICAgICBjb25zdCB2MiA9IHBhcnNlRmxvYXQoZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3YyJykudmFsdWUpOwogICAgICAgICAgICAgICAgICAgIGNvbnN0IHYzID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ3YzJykgPyBwYXJzZUZsb2F0KGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCd2MycpLnZhbHVlKSA6IDA7CgogICAgICAgICAgICAgICAgICAgIGlmICghdjEgfHwgIXYyKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIGlmIChtb2RlID09PSAnc2FzJykgewogICAgICAgICAgICAgICAgICAgICAgICAvLyBMYXcgb2YgQ29zaW5lczogYyA9IHNxcnQoYV4yK2JeMiAtIDJhYiBjb3MoQykpCiAgICAgICAgICAgICAgICAgICAgICAgIGlmICghdjMpIHJldHVybjsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgcmFkID0gdjMgKiBNYXRoLlBJIC8gMTgwOwogICAgICAgICAgICAgICAgICAgICAgICByZXMgPSBNYXRoLnNxcnQodjEgKiB2MSArIHYyICogdjIgLSAyICogdjEgKiB2MiAqIE1hdGguY29zKHJhZCkpOwogICAgICAgICAgICAgICAgICAgICAgICBzdGVwcyA9IGBVc2luZyBMYXcgb2YgQ29zaW5lczo8YnI+eMKyID0gYcKyICsgYsKyIC0gMmFiIGNvcyjOuCk8YnI+eCA9ICR7cmVzLnRvRml4ZWQoNCl9YDsKICAgICAgICAgICAgICAgICAgICAgICAgcHRzID0gW3sgeDogMCwgeTogMCB9LCB7IHg6IHYxLCB5OiAwIH0sIHsgeDogdjIgKiBNYXRoLmNvcyhyYWQpLCB5OiB2MiAqIE1hdGguc2luKHJhZCkgfV07CiAgICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgICAgIGVsc2UgaWYgKG1vZGUgPT09ICdhYXMnKSB7CiAgICAgICAgICAgICAgICAgICAgICAgIC8vIEFuZ2xlIEE9djEsIEFuZ2xlIEI9djIsIFNpZGUgYT12My4gRmluZCBTaWRlIGI/IFR5cGljYWxseSB1c2VycyB3YW50IG1pc3Npbmcgc2lkZXMuCiAgICAgICAgICAgICAgICAgICAgICAgIC8vIGIgLyBzaW5CID0gYSAvIHNpbkEgPT4gYiA9IGEgKiBzaW5CIC8gc2luQQogICAgICAgICAgICAgICAgICAgICAgICAvLyBUaGlzIHRvb2wgYXNzdW1lcyBmaW5kaW5nIFNpZGUgYiAob3Bwb3NpdGUgQW5nbGUgQikuCiAgICAgICAgICAgICAgICAgICAgICAgIGlmICghdjMpIHJldHVybjsKICAgICAgICAgICAgICAgICAgICAgICAgaWYgKHYxICsgdjIgPj0gMTgwKSB7IGFsZXJ0KCJTdW0gb2YgYW5nbGVzIG11c3QgYmUgPCAxODAiKTsgcmV0dXJuOyB9CiAgICAgICAgICAgICAgICAgICAgICAgIGNvbnN0IHJhZEEgPSB2MSAqIE1hdGguUEkgLyAxODA7CiAgICAgICAgICAgICAgICAgICAgICAgIGNvbnN0IHJhZEIgPSB2MiAqIE1hdGguUEkgLyAxODA7CiAgICAgICAgICAgICAgICAgICAgICAgIHJlcyA9IHYzICogTWF0aC5zaW4ocmFkQikgLyBNYXRoLnNpbihyYWRBKTsKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcHMgPSBgVXNpbmcgTGF3IG9mIFNpbmVzOjxicj5iIC8gc2luKEIpID0gYSAvIHNpbihBKTxicj5iID0gYSDDlyBzaW4oQikgLyBzaW4oQSk8YnI+YiA9ICR7cmVzLnRvRml4ZWQoNCl9YDsKICAgICAgICAgICAgICAgICAgICAgICAgLy8gQUFTIERyYXcgKGFwcHJveCkKICAgICAgICAgICAgICAgICAgICAgICAgLy8gQSBhdCBPcmlnaW4gY3JlYXRlcyBhbmdsZS4KICAgICAgICAgICAgICAgICAgICAgICAgLy8gTmVlZCBjb29yZGluYXRlcy4gQiBpcyBhdCAoYywgMCkuIEMgaXMgKHgseSkuCiAgICAgICAgICAgICAgICAgICAgICAgIC8vIFdlIG5lZWQgc2lkZSBjLi4uIGMgLyBzaW5DID0gYSAvIHNpbkEuIEMgPSAxODAtQS1CLgogICAgICAgICAgICAgICAgICAgICAgICBjb25zdCByYWRDID0gKDE4MCAtIHYxIC0gdjIpICogTWF0aC5QSSAvIDE4MDsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgYyA9IHYzICogTWF0aC5zaW4ocmFkQykgLyBNYXRoLnNpbihyYWRBKTsKICAgICAgICAgICAgICAgICAgICAgICAgY29uc3QgYSA9IHYzOwogICAgICAgICAgICAgICAgICAgICAgICBjb25zdCBiID0gcmVzOwogICAgICAgICAgICAgICAgICAgICAgICAvLyBBPSgwLDApLCBCPShjLDApLiBDPwogICAgICAgICAgICAgICAgICAgICAgICAvLyBDIHggPSBiIGNvc0EsIHkgPSBiIHNpbkEKICAgICAgICAgICAgICAgICAgICAgICAgcHRzID0gW3sgeDogMCwgeTogMCB9LCB7IHg6IGMsIHk6IDAgfSwgeyB4OiBiICogTWF0aC5jb3MocmFkQSksIHk6IGIgKiBNYXRoLnNpbihyYWRBKSB9XTsKICAgICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICAgICAgZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgICAgIC8vIFB5dGhhZzogYyA9IHNxcnQoYV4yK2JeMikKICAgICAgICAgICAgICAgICAgICAgICAgcmVzID0gTWF0aC5zcXJ0KHYxICogdjEgKyB2MiAqIHYyKTsKICAgICAgICAgICAgICAgICAgICAgICAgc3RlcHMgPSBgeCA9IOKImihhwrIgKyBiwrIpID0gJHtyZXMudG9GaXhlZCg0KX1gOwogICAgICAgICAgICAgICAgICAgICAgICBwdHMgPSBbeyB4OiAwLCB5OiAwIH0sIHsgeDogdjEsIHk6IDAgfSwgeyB4OiAwLCB5OiB2MiB9XTsKICAgICAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgICAgIGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdyZXMtdmFsJykuaW5uZXJUZXh0ID0gcmVzLnRvRml4ZWQoNCk7CiAgICAgICAgICAgICAgICAgICAgZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoJ21zdGMtc3RlcHMnKS5pbm5lckhUTUwgPSBzdGVwczsKICAgICAgICAgICAgICAgICAgICBkb2N1bWVudC5nZXRFbGVtZW50QnlJZCgnbXN0Yy1yZXMnKS5zdHlsZS5kaXNwbGF5ID0gJ2Jsb2NrJzsKICAgICAgICAgICAgICAgICAgICBtc3RjRHJhdyhwdHMpOwoKICAgICAgICAgICAgICAgIH0gY2F0Y2ggKGUpIHsgfQogICAgICAgICAgICB9CgogICAgICAgICAgICBmdW5jdGlvbiBtc3RjRHJhdyhwdHMpIHsKICAgICAgICAgICAgICAgIGNvbnN0IHN2ZyA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKCdtc3RjLXN2ZycpOwogICAgICAgICAgICAgICAgY29uc3QgeHMgPSBwdHMubWFwKHAgPT4gcC54KSwgeXMgPSBwdHMubWFwKHAgPT4gcC55KTsKICAgICAgICAgICAgICAgIGNvbnN0IG14ID0gTWF0aC5taW4oLi4ueHMpLCBNeCA9IE1hdGgubWF4KC4uLnhzKSwgbXkgPSBNYXRoLm1pbiguLi55cyksIE15ID0gTWF0aC5tYXgoLi4ueXMpOwogICAgICAgICAgICAgICAgY29uc3QgdyA9IE14IC0gbXgsIGggPSBNeSAtIG15OwogICAgICAgICAgICAgICAgY29uc3QgcGFkID0gTWF0aC5tYXgodywgaCkgKiAwLjI7CiAgICAgICAgICAgICAgICBjb25zdCBkID0gYE0gJHtwdHNbMF0ueH0gJHtwdHNbMF0ueX0gTCAke3B0c1sxXS54fSAke3B0c1sxXS55fSBMICR7cHRzWzJdLnh9ICR7cHRzWzJdLnl9IFpgOwoKICAgICAgICAgICAgICAgIC8vIEZsaXAgWSBpbXBsaWNpdGx5IG9yIGFzc3VtZSBjb29yZHMKICAgICAgICAgICAgICAgIHN2Zy5pbm5lckhUTUwgPSBgPHBhdGggZD0iJHtkfSIgZmlsbD0iI2Y0ZWNmNyIgc3Ryb2tlPSIjOGU0NGFkIiBzdHJva2Utd2lkdGg9IiR7TWF0aC5tYXgodywgaCkgLyA0MH0iIC8+YDsKICAgICAgICAgICAgICAgIHN2Zy5zZXRBdHRyaWJ1dGUoJ3ZpZXdCb3gnLCBgJHtteCAtIHBhZH0gJHtteSAtIHBhZH0gJHt3ICsgMiAqIHBhZH0gJHtoICsgMiAqIHBhZH1gKTsKICAgICAgICAgICAgfQoKICAgICAgICAgICAgbXN0Y1Jlc2V0KCk7CiAgICAgICAgPC9zY3JpcHQ+CiAgICA8L2Rpdj4KICAgIDwhLS0gTWlzc2luZyBTaWRlIG9mIFRyaWFuZ2xlIENhbGN1bGF0b3IgRW5kIC0tPgoKPC9ib2R5PgoKPC9odG1sPg==”; var htmlContent = “”; try { htmlContent = atob(b64); } catch (e) { console.error(“Base64 decode failed”, e); wrapper.innerHTML = ” Error loading calculator. “; return; } // Create Iframe var iframe = document.createElement(‘iframe’); iframe.style.width = “100%”; iframe.style.border = “none”; iframe.style.overflow = “hidden”; iframe.scrolling = “no”; iframe.style.minHeight = “400px”;…

  • Pythagorean Theorem Calculator – Find Hypotenuse & Missing Sides

    Pythagorean Theorem Calculator Find a missing side or distance using the Pythagorean theorem. Solve Mode Two Legs → HypotenuseHypotenuse + One Leg → Other LegDistance Between Two Points Leg a Leg b Hypotenuse (c) Known Leg Point 1 (x₁, y₁) Point 2 (x₂, y₂) Select Unit unitscmminft Calculate function calculatePythagorean(){ const u = unit.value; let…

  • Exterior Angle of Triangle Calculator – Find Exterior Angle Fast

    Exterior Angle of Triangle Calculator Compute one or more exterior angles of a triangle from interior angles. Solve By Single Interior → ExteriorThree Interiors → All ExteriorsTwo Interiors → Third + All ExteriorsVerify Triangle Angles Interior Angle (°) Calculate the exterior at that vertex. Angle A (°) Angle B (°) Angle C (°) All three…

  • Triangle Area Using Vectors Calculator — Calculate Area from Vector Inputs

    Triangle Area Calculator Using Vectors 2D Vectors 3D Vectors Vector A Vector B Select Unit mmcmminft Calculate Area Formula: Area = ½ × |A × B| In 2D: ½ × |Ax·By − Ay·Bx| In 3D: ½ × |cross product magnitude| In mathematics, physics, and engineering, vectors are used to represent quantities that have both magnitude…